1
0
mirror of https://github.com/thooge/esp32-nmea2000-obp60.git synced 2025-12-29 13:33:06 +01:00

Lots of fixes and enhancements for OBPcharts; ringbuffer now returns <double> values - internally still 2-byte storage; charts operate now with SI values; added flexible multiplier to history buffer; included data calibration for history data

This commit is contained in:
Ulrich Meine
2025-11-22 02:33:58 +01:00
parent dd5f05922a
commit 489ee7ed09
8 changed files with 676 additions and 359 deletions

View File

@@ -1,15 +1,19 @@
#include "OBPDataOperations.h"
#include "BoatDataCalibration.h" // Functions lib for data instance calibration
#include <math.h>
// --- Class HstryBuf ---------------
// Init history buffers for selected boat data
void HstryBuf::init(BoatValueList* boatValues, GwLog *log) {
logger = log;
int hstryUpdFreq = 1000; // Update frequency for history buffers in ms
int hstryMinVal = 0; // Minimum value for these history buffers
twdHstryMax = 6283; // Max value for wind direction (TWD, AWD) in rad [0...2*PI], shifted by 1000 for 3 decimals
twsHstryMax = 65000; // Max value for wind speed (TWS, AWS) in m/s [0..65], shifted by 1000 for 3 decimals
int mltplr = 1000; // Multiplier which transforms original <double> value into buffer type format
double hstryMinVal = 0; // Minimum value for these history buffers
twdHstryMax = 2 * M_PI; // Max value for wind direction (TWD, AWD) in rad [0...2*PI]
twsHstryMax = 65; // Max value for wind speed (TWS, AWS) in m/s [0..65] (limit due to type capacity of buffer - shifted by <mltplr>)
awdHstryMax = twdHstryMax;
awsHstryMax = twsHstryMax;
twdHstryMin = hstryMinVal;
@@ -19,10 +23,12 @@ void HstryBuf::init(BoatValueList* boatValues, GwLog *log) {
const double DBL_MAX = std::numeric_limits<double>::max();
// Initialize history buffers with meta data
hstryBufList.twdHstry->setMetaData("TWD", "formatCourse", hstryUpdFreq, hstryMinVal, twdHstryMax);
hstryBufList.twsHstry->setMetaData("TWS", "formatKnots", hstryUpdFreq, hstryMinVal, twsHstryMax);
hstryBufList.awdHstry->setMetaData("AWD", "formatCourse", hstryUpdFreq, hstryMinVal, twdHstryMax);
hstryBufList.awsHstry->setMetaData("AWS", "formatKnots", hstryUpdFreq, hstryMinVal, twsHstryMax);
mltplr = 10000; // Store 4 decimals for course data
hstryBufList.twdHstry->setMetaData("TWD", "formatCourse", hstryUpdFreq, mltplr, hstryMinVal, twdHstryMax);
hstryBufList.awdHstry->setMetaData("AWD", "formatCourse", hstryUpdFreq, mltplr, hstryMinVal, twdHstryMax);
mltplr = 1000; // Store 3 decimals for windspeed data
hstryBufList.twsHstry->setMetaData("TWS", "formatKnots", hstryUpdFreq, mltplr, hstryMinVal, twsHstryMax);
hstryBufList.awsHstry->setMetaData("AWS", "formatKnots", hstryUpdFreq, mltplr, hstryMinVal, twsHstryMax);
// create boat values for history data types, if they don't exist yet
twdBVal = boatValues->findValueOrCreate(hstryBufList.twdHstry->getName());
@@ -49,30 +55,32 @@ void HstryBuf::init(BoatValueList* boatValues, GwLog *log) {
//void HstryBuf::handleHstryBuf(GwApi* api, BoatValueList* boatValues, bool useSimuData) {
void HstryBuf::handleHstryBuf(bool useSimuData) {
static int16_t twd = 20; //initial value only relevant if we use simulation data
static uint16_t tws = 20; //initial value only relevant if we use simulation data
static double awd, aws, hdt = 20; //initial value only relevant if we use simulation data
static double twd, tws, awd, aws, hdt = 20; //initial value only relevant if we use simulation data
GwApi::BoatValue *calBVal; // temp variable just for data calibration -> we don't want to calibrate the original data here
LOG_DEBUG(GwLog::DEBUG,"obp60task handleHstryBuf: TWD_isValid? %d, twdBVal: %.1f, twaBVal: %.1f, twsBVal: %.1f", twdBVal->valid, twdBVal->value * RAD_TO_DEG,
twaBVal->value * RAD_TO_DEG, twsBVal->value * 3.6 / 1.852);
if (twdBVal->valid) {
// if (!useSimuData) {
calBVal = new GwApi::BoatValue("TWD"); // temporary solution for calibration of history buffer values
calBVal->setFormat(twdBVal->getFormat());
calBVal->value = twdBVal->value;
calBVal->valid = twdBVal->valid;
calibrationData.calibrateInstance(calBVal, logger); // Check if boat data value is to be calibrated
twd = static_cast<int16_t>(std::round(calBVal->value * 1000.0));
twd = calBVal->value;
if (twd >= twdHstryMin && twd <= twdHstryMax) {
hstryBufList.twdHstry->add(twd);
LOG_DEBUG(GwLog::DEBUG,"obp60task handleHstryBuf: calBVal.value %.2f, twd: %.2f, twdHstryMin: %.1f, twdHstryMax: %.2f", calBVal->value, twd, twdHstryMin, twdHstryMax);
}
delete calBVal;
calBVal = nullptr;
} else if (useSimuData) {
// } else {
twd += random(-20, 20);
twd = WindUtils::to360(twd);
hstryBufList.twdHstry->add(static_cast<int16_t>(DegToRad(twd) * 1000.0));
twd += static_cast<double>(random(-349, 349) / 1000.0); // add up to +/- 20 degree in RAD
twd = WindUtils::to2PI(twd);
hstryBufList.twdHstry->add(twd);
}
if (twsBVal->valid) {
@@ -81,15 +89,16 @@ void HstryBuf::handleHstryBuf(bool useSimuData) {
calBVal->value = twsBVal->value;
calBVal->valid = twsBVal->valid;
calibrationData.calibrateInstance(calBVal, logger); // Check if boat data value is to be calibrated
tws = static_cast<uint16_t>(std::round(calBVal->value * 1000));
tws = calBVal->value;
if (tws >= twsHstryMin && tws <= twsHstryMax) {
hstryBufList.twsHstry->add(tws);
}
delete calBVal;
calBVal = nullptr;
} else if (useSimuData) {
tws += random(-5000, 5000); // TWS value in m/s; expands to 3 decimals
tws = constrain(tws, 0, 25000); // Limit TWS to [0..25] m/s
// tws += random(-5000, 5000); // TWS value in m/s; expands to 3 decimals
tws += static_cast<double>(random(-5000, 5000) / 1000.0); // add up to +/- 5 m/s TWS speed
tws = constrain(tws, 0, 40); // Limit TWS to [0..40] m/s
hstryBufList.twsHstry->add(tws);
}
@@ -109,16 +118,16 @@ void HstryBuf::handleHstryBuf(bool useSimuData) {
calibrationData.calibrateInstance(calBVal, logger); // Check if boat data value is to be calibrated
awdBVal->value = calBVal->value;
awdBVal->valid = true;
awd = std::round(calBVal->value * 1000.0);
awd = calBVal->value;
if (awd >= awdHstryMin && awd <= awdHstryMax) {
hstryBufList.awdHstry->add(static_cast<int16_t>(awd));
hstryBufList.awdHstry->add(awd);
}
delete calBVal;
calBVal = nullptr;
} else if (useSimuData) {
awd += random(-20, 20);
awd = WindUtils::to360(awd);
hstryBufList.awdHstry->add(static_cast<int16_t>(DegToRad(awd) * 1000.0));
awd += static_cast<double>(random(-349, 349) / 1000.0); // add up to +/- 20 degree in RAD
awd = WindUtils::to2PI(awd);
hstryBufList.awdHstry->add(awd);
}
if (awsBVal->valid) {
@@ -127,26 +136,28 @@ void HstryBuf::handleHstryBuf(bool useSimuData) {
calBVal->value = awsBVal->value;
calBVal->valid = awsBVal->valid;
calibrationData.calibrateInstance(calBVal, logger); // Check if boat data value is to be calibrated
aws = std::round(calBVal->value * 1000);
aws = calBVal->value;
if (aws >= awsHstryMin && aws <= awsHstryMax) {
hstryBufList.awsHstry->add(static_cast<uint16_t>(aws));
hstryBufList.awsHstry->add(aws);
}
delete calBVal;
calBVal = nullptr;
} else if (useSimuData) {
aws += random(-5000, 5000); // TWS value in m/s; expands to 1 decimal
aws = constrain(aws, 0, 25000); // Limit TWS to [0..25] m/s
aws += static_cast<double>(random(-5000, 5000) / 1000.0); // add up to +/- 5 m/s TWS speed
aws = constrain(aws, 0, 40); // Limit TWS to [0..40] m/s
hstryBufList.awsHstry->add(aws);
}
LOG_DEBUG(GwLog::DEBUG,"obp60task handleHstryBuf-End: Buffer twdHstry: %.3f, twsHstry: %.3f, awdHstry: %.3f, awsHstry: %.3f", hstryBufList.twdHstry->getLast(), hstryBufList.twsHstry->getLast(),
hstryBufList.awdHstry->getLast(),hstryBufList.awsHstry->getLast());
}
// --- Class HstryBuf ---------------
// --- Class WindUtils --------------
double WindUtils::to2PI(double a)
{
a = fmod(a, 2 * M_PI);
a = fmod(a, M_TWOPI);
if (a < 0.0) {
a += 2 * M_PI;
a += M_TWOPI;
}
return a;
}
@@ -162,18 +173,18 @@ double WindUtils::toPI(double a)
double WindUtils::to360(double a)
{
a = fmod(a, 360);
a = fmod(a, 360.0);
if (a < 0.0) {
a += 360;
a += 360.0;
}
return a;
}
double WindUtils::to180(double a)
{
a += 180;
a += 180.0;
a = to360(a);
a -= 180;
a -= 180.0;
return a;
}
@@ -263,7 +274,7 @@ bool WindUtils::calcTrueWind(const double* awaVal, const double* awsVal,
// If STW and SOG are not available, we cannot calculate true wind
return false;
}
// Serial.println("\ncalcTrueWind: HDT: " + String(hdt) + ", CTW: " + String(ctw) + ", STW: " + String(stw));
// Serial.println("\ncalcTrueWind: HDT: " + String(hdt) + ", CTW: " + String(ctw) + ", STW: " + String(stw));
if ((*awaVal == DBL_MAX) || (*awsVal == DBL_MAX)) {
// Cannot calculate true wind without valid AWA, AWS; other checks are done earlier

View File

@@ -2,14 +2,12 @@
#pragma once
#include <N2kMessages.h>
#include "OBPRingBuffer.h"
#include "BoatDataCalibration.h" // Functions lib for data instance calibration
#include "obp60task.h"
#include <math.h>
typedef struct {
RingBuffer<int16_t>* twdHstry;
RingBuffer<uint16_t>* twdHstry;
RingBuffer<uint16_t>* twsHstry;
RingBuffer<int16_t>* awdHstry;
RingBuffer<uint16_t>* awdHstry;
RingBuffer<uint16_t>* awsHstry;
} tBoatHstryData; // Holds pointers to all history buffers for boat data
@@ -17,18 +15,18 @@ class HstryBuf {
private:
GwLog *logger;
RingBuffer<int16_t> twdHstry; // Circular buffer to store true wind direction values
RingBuffer<uint16_t> twdHstry; // Circular buffer to store true wind direction values
RingBuffer<uint16_t> twsHstry; // Circular buffer to store true wind speed values (TWS)
RingBuffer<int16_t> awdHstry; // Circular buffer to store apparant wind direction values
RingBuffer<uint16_t> awdHstry; // Circular buffer to store apparant wind direction values
RingBuffer<uint16_t> awsHstry; // Circular buffer to store apparant xwind speed values (AWS)
int16_t twdHstryMin; // Min value for wind direction (TWD) in history buffer
int16_t twdHstryMax; // Max value for wind direction (TWD) in history buffer
uint16_t twsHstryMin;
uint16_t twsHstryMax;
int16_t awdHstryMin;
int16_t awdHstryMax;
uint16_t awsHstryMin;
uint16_t awsHstryMax;
double twdHstryMin; // Min value for wind direction (TWD) in history buffer
double twdHstryMax; // Max value for wind direction (TWD) in history buffer
double twsHstryMin;
double twsHstryMax;
double awdHstryMin;
double awdHstryMax;
double awsHstryMin;
double awsHstryMax;
// boat values for buffers and for true wind calculation
GwApi::BoatValue *twdBVal, *twsBVal, *twaBVal, *awdBVal, *awsBVal;
@@ -72,6 +70,7 @@ public:
hdmBVal = boatValues->findValueOrCreate("HDM");
varBVal = boatValues->findValueOrCreate("VAR");
};
static double to2PI(double a);
static double toPI(double a);
static double to360(double a);

View File

@@ -1,10 +1,6 @@
#pragma once
//#include "FreeRTOS.h"
#include "GwSynchronized.h"
#include "WString.h"
#include "esp_heap_caps.h"
#include <algorithm>
#include <limits>
#include <stdexcept>
#include <vector>
template <typename T>
@@ -41,7 +37,6 @@ bool operator!=(const PSRAMAllocator<T>&, const PSRAMAllocator<U>&) { return fal
template <typename T>
class RingBuffer {
private:
// std::vector<T> buffer; // THE buffer vector
std::vector<T, PSRAMAllocator<T>> buffer; // THE buffer vector, allocated in PSRAM
size_t capacity;
size_t head; // Points to the next insertion position
@@ -51,49 +46,52 @@ private:
bool is_Full; // Indicates that all buffer elements are used and ringing is in use
T MIN_VAL; // lowest possible value of buffer of type <T>
T MAX_VAL; // highest possible value of buffer of type <T> -> indicates invalid value in buffer
double dblMIN_VAL, dblMAX_VAL; // MIN_VAL, MAX_VAL in double format
mutable SemaphoreHandle_t bufLocker;
// metadata for buffer
String dataName; // Name of boat data in buffer
String dataFmt; // Format of boat data in buffer
int updFreq; // Update frequency in milliseconds
T smallest; // Value range of buffer: smallest value; needs to be => MIN_VAL
T largest; // Value range of buffer: biggest value; needs to be < MAX_VAL, since MAX_VAL indicates invalid entries
double mltplr; // Multiplier which transforms original <double> value into buffer type format
double smallest; // Value range of buffer: smallest value; needs to be => MIN_VAL
double largest; // Value range of buffer: biggest value; needs to be < MAX_VAL, since MAX_VAL indicates invalid entries
void initCommon();
public:
RingBuffer();
RingBuffer(size_t size);
void setMetaData(String name, String format, int updateFrequency, T minValue, T maxValue); // Set meta data for buffer
bool getMetaData(String& name, String& format, int& updateFrequency, T& minValue, T& maxValue); // Get meta data of buffer
void setMetaData(String name, String format, int updateFrequency, double multiplier, double minValue, double maxValue); // Set meta data for buffer
bool getMetaData(String& name, String& format, int& updateFrequency, double& multiplier, double& minValue, double& maxValue); // Get meta data of buffer
bool getMetaData(String& name, String& format);
String getName() const; // Get buffer name
String getFormat() const; // Get buffer data format
void add(const T& value); // Add a new value to buffer
T get(size_t index) const; // Get value at specific position (0-based index from oldest to newest)
T getFirst() const; // Get the first (oldest) value in buffer
T getLast() const; // Get the last (newest) value in buffer
T getMin() const; // Get the lowest value in buffer
T getMin(size_t amount) const; // Get minimum value of the last <amount> values of buffer
T getMax() const; // Get the highest value in buffer
T getMax(size_t amount) const; // Get maximum value of the last <amount> values of buffer
T getMid() const; // Get mid value between <min> and <max> value in buffer
T getMid(size_t amount) const; // Get mid value between <min> and <max> value of the last <amount> values of buffer
T getMedian() const; // Get the median value in buffer
T getMedian(size_t amount) const; // Get the median value of the last <amount> values of buffer
void add(const double& value); // Add a new value to buffer
double get(size_t index) const; // Get value at specific position (0-based index from oldest to newest)
double getFirst() const; // Get the first (oldest) value in buffer
double getLast() const; // Get the last (newest) value in buffer
double getMin() const; // Get the lowest value in buffer
double getMin(size_t amount) const; // Get minimum value of the last <amount> values of buffer
double getMax() const; // Get the highest value in buffer
double getMax(size_t amount) const; // Get maximum value of the last <amount> values of buffer
double getMid() const; // Get mid value between <min> and <max> value in buffer
double getMid(size_t amount) const; // Get mid value between <min> and <max> value of the last <amount> values of buffer
double getMedian() const; // Get the median value in buffer
double getMedian(size_t amount) const; // Get the median value of the last <amount> values of buffer
size_t getCapacity() const; // Get the buffer capacity (maximum size)
size_t getCurrentSize() const; // Get the current number of elements in buffer
size_t getFirstIdx() const; // Get the index of oldest value in buffer
size_t getLastIdx() const; // Get the index of newest value in buffer
bool isEmpty() const; // Check if buffer is empty
bool isFull() const; // Check if buffer is full
T getMinVal() const; // Get lowest possible value for buffer
T getMaxVal() const; // Get highest possible value for buffer; used for unset/invalid buffer data
double getMinVal() const; // Get lowest possible value for buffer
double getMaxVal() const; // Get highest possible value for buffer; used for unset/invalid buffer data
void clear(); // Clear buffer
void resize(size_t size); // Delete buffer and set new size
T operator[](size_t index) const; // Operator[] for convenient access (same as get())
std::vector<T> getAllValues() const; // Get all current values as a vector
double operator[](size_t index) const; // Operator[] for convenient access (same as get())
std::vector<double> getAllValues() const; // Get all current values in native buffer format as a vector
std::vector<double> getAllValues(size_t amount) const; // Get last <amount> values in native buffer format as a vector
};
#include "OBPRingBuffer.tpp"

View File

@@ -1,14 +1,20 @@
#include "OBPRingBuffer.h"
#include <algorithm>
#include <limits>
template <typename T>
void RingBuffer<T>::initCommon() {
void RingBuffer<T>::initCommon()
{
MIN_VAL = std::numeric_limits<T>::lowest();
MAX_VAL = std::numeric_limits<T>::max();
dblMIN_VAL = static_cast<double>(MIN_VAL);
dblMAX_VAL = static_cast<double>(MAX_VAL);
dataName = "";
dataFmt = "";
updFreq = -1;
smallest = MIN_VAL;
largest = MAX_VAL;
mltplr = 1;
smallest = dblMIN_VAL;
largest = dblMAX_VAL;
bufLocker = xSemaphoreCreateMutex();
}
@@ -42,19 +48,20 @@ RingBuffer<T>::RingBuffer(size_t size)
// Specify meta data of buffer content
template <typename T>
void RingBuffer<T>::setMetaData(String name, String format, int updateFrequency, T minValue, T maxValue)
void RingBuffer<T>::setMetaData(String name, String format, int updateFrequency, double multiplier, double minValue, double maxValue)
{
GWSYNCHRONIZED(&bufLocker);
dataName = name;
dataFmt = format;
updFreq = updateFrequency;
smallest = std::max(MIN_VAL, minValue);
largest = std::min(MAX_VAL, maxValue);
mltplr = multiplier;
smallest = std::max(dblMIN_VAL, minValue);
largest = std::min(dblMAX_VAL, maxValue);
}
// Get meta data of buffer content
template <typename T>
bool RingBuffer<T>::getMetaData(String& name, String& format, int& updateFrequency, T& minValue, T& maxValue)
bool RingBuffer<T>::getMetaData(String& name, String& format, int& updateFrequency, double& multiplier, double& minValue, double& maxValue)
{
if (dataName == "" || dataFmt == "" || updFreq == -1) {
return false; // Meta data not set
@@ -64,6 +71,7 @@ bool RingBuffer<T>::getMetaData(String& name, String& format, int& updateFrequen
name = dataName;
format = dataFmt;
updateFrequency = updFreq;
multiplier = mltplr;
minValue = smallest;
maxValue = largest;
return true;
@@ -99,13 +107,13 @@ String RingBuffer<T>::getFormat() const
// Add a new value to buffer
template <typename T>
void RingBuffer<T>::add(const T& value)
void RingBuffer<T>::add(const double& value)
{
GWSYNCHRONIZED(&bufLocker);
if (value < smallest || value > largest) {
buffer[head] = MAX_VAL; // Store MAX_VAL if value is out of range
} else {
buffer[head] = value;
buffer[head] = static_cast<T>(std::round(value * mltplr));
}
last = head;
@@ -117,63 +125,63 @@ void RingBuffer<T>::add(const T& value)
is_Full = true;
}
}
// Serial.printf("Ringbuffer: value %.3f, multiplier: %.1f, buffer: %d\n", value, mltplr, buffer[head]);
head = (head + 1) % capacity;
}
// Get value at specific position (0-based index from oldest to newest)
template <typename T>
T RingBuffer<T>::get(size_t index) const
double RingBuffer<T>::get(size_t index) const
{
GWSYNCHRONIZED(&bufLocker);
if (isEmpty() || index < 0 || index >= count) {
return MAX_VAL;
return dblMAX_VAL;
}
size_t realIndex = (first + index) % capacity;
return buffer[realIndex];
return static_cast<double>(buffer[realIndex] / mltplr);
}
// Operator[] for convenient access (same as get())
template <typename T>
T RingBuffer<T>::operator[](size_t index) const
double RingBuffer<T>::operator[](size_t index) const
{
return get(index);
}
// Get the first (oldest) value in the buffer
template <typename T>
T RingBuffer<T>::getFirst() const
double RingBuffer<T>::getFirst() const
{
if (isEmpty()) {
return MAX_VAL;
return dblMAX_VAL;
}
return get(0);
}
// Get the last (newest) value in the buffer
template <typename T>
T RingBuffer<T>::getLast() const
double RingBuffer<T>::getLast() const
{
if (isEmpty()) {
return MAX_VAL;
return dblMAX_VAL;
}
return get(count - 1);
}
// Get the lowest value in the buffer
template <typename T>
T RingBuffer<T>::getMin() const
double RingBuffer<T>::getMin() const
{
if (isEmpty()) {
return MAX_VAL;
return dblMAX_VAL;
}
T minVal = MAX_VAL;
T value;
double minVal = dblMAX_VAL;
double value;
for (size_t i = 0; i < count; i++) {
value = get(i);
if (value < minVal && value != MAX_VAL) {
if (value < minVal && value != dblMAX_VAL) {
minVal = value;
}
}
@@ -182,19 +190,19 @@ T RingBuffer<T>::getMin() const
// Get minimum value of the last <amount> values of buffer
template <typename T>
T RingBuffer<T>::getMin(size_t amount) const
double RingBuffer<T>::getMin(size_t amount) const
{
if (isEmpty() || amount <= 0) {
return MAX_VAL;
return dblMAX_VAL;
}
if (amount > count)
amount = count;
T minVal = MAX_VAL;
T value;
double minVal = dblMAX_VAL;
double value;
for (size_t i = 0; i < amount; i++) {
value = get(count - 1 - i);
if (value < minVal && value != MAX_VAL) {
if (value < minVal && value != dblMAX_VAL) {
minVal = value;
}
}
@@ -203,75 +211,81 @@ T RingBuffer<T>::getMin(size_t amount) const
// Get the highest value in the buffer
template <typename T>
T RingBuffer<T>::getMax() const
double RingBuffer<T>::getMax() const
{
if (isEmpty()) {
return MAX_VAL;
return dblMAX_VAL;
}
T maxVal = MIN_VAL;
T value;
double maxVal = dblMIN_VAL;
double value;
for (size_t i = 0; i < count; i++) {
value = get(i);
if (value > maxVal && value != MAX_VAL) {
if (value > maxVal && value != dblMAX_VAL) {
maxVal = value;
}
}
if (maxVal == dblMIN_VAL) { // no change of initial value -> buffer has only invalid values (MAX_VAL)
maxVal = dblMAX_VAL;
}
return maxVal;
}
// Get maximum value of the last <amount> values of buffer
template <typename T>
T RingBuffer<T>::getMax(size_t amount) const
double RingBuffer<T>::getMax(size_t amount) const
{
if (isEmpty() || amount <= 0) {
return MAX_VAL;
return dblMAX_VAL;
}
if (amount > count)
amount = count;
T maxVal = MIN_VAL;
T value;
double maxVal = dblMIN_VAL;
double value;
for (size_t i = 0; i < amount; i++) {
value = get(count - 1 - i);
if (value > maxVal && value != MAX_VAL) {
if (value > maxVal && value != dblMAX_VAL) {
maxVal = value;
}
}
if (maxVal == dblMIN_VAL) { // no change of initial value -> buffer has only invalid values (MAX_VAL)
maxVal = dblMAX_VAL;
}
return maxVal;
}
// Get mid value between <min> and <max> value in the buffer
template <typename T>
T RingBuffer<T>::getMid() const
double RingBuffer<T>::getMid() const
{
if (isEmpty()) {
return MAX_VAL;
return dblMAX_VAL;
}
return (getMin() + getMax()) / static_cast<T>(2);
return (getMin() + getMax()) / 2;
}
// Get mid value between <min> and <max> value of the last <amount> values of buffer
template <typename T>
T RingBuffer<T>::getMid(size_t amount) const
double RingBuffer<T>::getMid(size_t amount) const
{
if (isEmpty() || amount <= 0) {
return MAX_VAL;
return dblMAX_VAL;
}
if (amount > count)
amount = count;
return (getMin(amount) + getMax(amount)) / static_cast<T>(2);
return (getMin(amount) + getMax(amount)) / 2;
}
// Get the median value in the buffer
template <typename T>
T RingBuffer<T>::getMedian() const
double RingBuffer<T>::getMedian() const
{
if (isEmpty()) {
return MAX_VAL;
return dblMAX_VAL;
}
// Create a temporary vector with current valid elements
@@ -287,20 +301,20 @@ T RingBuffer<T>::getMedian() const
if (count % 2 == 1) {
// Odd number of elements
return temp[count / 2];
return static_cast<double>(temp[count / 2]);
} else {
// Even number of elements - return average of middle two
// Note: For integer types, this truncates. For floating point, it's exact.
return (temp[count / 2 - 1] + temp[count / 2]) / 2;
return static_cast<double>((temp[count / 2 - 1] + temp[count / 2]) / 2);
}
}
// Get the median value of the last <amount> values of buffer
template <typename T>
T RingBuffer<T>::getMedian(size_t amount) const
double RingBuffer<T>::getMedian(size_t amount) const
{
if (isEmpty() || amount <= 0) {
return MAX_VAL;
return dblMAX_VAL;
}
if (amount > count)
amount = count;
@@ -310,7 +324,7 @@ T RingBuffer<T>::getMedian(size_t amount) const
temp.reserve(amount);
for (size_t i = 0; i < amount; i++) {
temp.push_back(get(i));
temp.push_back(get(count - 1 - i));
}
// Sort to find median
@@ -318,11 +332,11 @@ T RingBuffer<T>::getMedian(size_t amount) const
if (amount % 2 == 1) {
// Odd number of elements
return temp[amount / 2];
return static_cast<double>(temp[amount / 2]);
} else {
// Even number of elements - return average of middle two
// Note: For integer types, this truncates. For floating point, it's exact.
return (temp[amount / 2 - 1] + temp[amount / 2]) / 2;
return static_cast<double>((temp[amount / 2 - 1] + temp[amount / 2]) / 2);
}
}
@@ -370,16 +384,16 @@ bool RingBuffer<T>::isFull() const
// Get lowest possible value for buffer
template <typename T>
T RingBuffer<T>::getMinVal() const
double RingBuffer<T>::getMinVal() const
{
return MIN_VAL;
return dblMIN_VAL;
}
// Get highest possible value for buffer; used for unset/invalid buffer data
template <typename T>
T RingBuffer<T>::getMaxVal() const
double RingBuffer<T>::getMaxVal() const
{
return MAX_VAL;
return dblMAX_VAL;
}
// Clear buffer
@@ -411,16 +425,37 @@ void RingBuffer<T>::resize(size_t newSize)
buffer.resize(newSize, MAX_VAL);
}
// Get all current values as a vector
// Get all current values in native buffer format as a vector
template <typename T>
std::vector<T> RingBuffer<T>::getAllValues() const
std::vector<double> RingBuffer<T>::getAllValues() const
{
std::vector<T> result;
std::vector<double> result;
result.reserve(count);
for (size_t i = 0; i < count; i++) {
result.push_back(get(i));
}
return result;
}
// Get last <amount> values in native buffer format as a vector
template <typename T>
std::vector<double> RingBuffer<T>::getAllValues(size_t amount) const
{
std::vector<double> result;
if (isEmpty() || amount <= 0) {
return result;
}
if (amount > count)
amount = count;
result.reserve(amount);
for (size_t i = 0; i < amount; i++) {
result.push_back(get(count - 1 - i));
}
return result;
}

View File

@@ -5,7 +5,7 @@
// --- Class Chart ---------------
template <typename T>
Chart<T>::Chart(RingBuffer<T>& dataBuf, int8_t chrtDir, int8_t chrtSz, int dfltRng, CommonData& common, bool useSimuData)
Chart<T>::Chart(RingBuffer<T>& dataBuf, int8_t chrtDir, int8_t chrtSz, double dfltRng, CommonData& common, bool useSimuData)
: dataBuf(dataBuf)
, chrtDir(chrtDir)
, chrtSz(chrtSz)
@@ -17,28 +17,28 @@ Chart<T>::Chart(RingBuffer<T>& dataBuf, int8_t chrtDir, int8_t chrtSz, int dfltR
fgColor = commonData->fgcolor;
bgColor = commonData->bgcolor;
LOG_DEBUG(GwLog::DEBUG, "Chart create: dataBuf: %p", (void*)&dataBuf);
LOG_DEBUG(GwLog::DEBUG, "Chart Init: dataBuf: %p", (void*)&dataBuf);
dWidth = getdisplay().width();
dHeight = getdisplay().height();
if (chrtDir == 0) {
// horizontal chart timeline direction
timAxis = dWidth - xOffset;
timAxis = dWidth;
switch (chrtSz) {
case 0:
valAxis = dHeight - top - bottom;
cStart = { xOffset, top };
cStart = { 0, top };
break;
case 1:
valAxis = (dHeight - top - bottom) / 2 - gap;
cStart = { xOffset, top };
cStart = { 0, top };
break;
case 2:
valAxis = (dHeight - top - bottom) / 2 - gap;
cStart = { xOffset, top + (valAxis + gap) + gap };
cStart = { 0, top + (valAxis + gap) + gap };
break;
default:
LOG_DEBUG(GwLog::DEBUG, "displayChart: wrong parameter");
LOG_DEBUG(GwLog::ERROR, "displayChart: wrong init parameter");
return;
}
} else if (chrtDir == 1) {
@@ -46,31 +46,52 @@ Chart<T>::Chart(RingBuffer<T>& dataBuf, int8_t chrtDir, int8_t chrtSz, int dfltR
timAxis = dHeight - top - bottom;
switch (chrtSz) {
case 0:
valAxis = dWidth - xOffset;
cStart = { xOffset, top };
valAxis = dWidth;
cStart = { 0, top };
break;
case 1:
valAxis = dWidth / 2 - gap;
valAxis = dWidth / 2 - gap - 1;
cStart = { 0, top };
break;
case 2:
valAxis = dWidth / 2 - gap;
valAxis = dWidth / 2 - gap - 1;
cStart = { dWidth / 2 + gap, top };
break;
default:
LOG_DEBUG(GwLog::DEBUG, "displayChart: wrong parameter");
LOG_DEBUG(GwLog::ERROR, "displayChart: wrong init parameter");
return;
}
} else {
LOG_DEBUG(GwLog::DEBUG, "displayChart: wrong parameter");
LOG_DEBUG(GwLog::ERROR, "displayChart: wrong init parameter");
return;
}
// xCenter = timAxis / 2;
dataBuf.getMetaData(dbName, dbFormat);
dbMIN_VAL = dataBuf.getMinVal();
dbMAX_VAL = dataBuf.getMaxVal();
bufSize = dataBuf.getCapacity();
LOG_DEBUG(GwLog::DEBUG, "Chart create: dWidth: %d, dHeight: %d, timAxis: %d, valAxis: %d, cStart {x,y}: %d, %d, dbname: %s", dWidth, dHeight, timAxis, valAxis, cStart.x, cStart.y, dbName);
if (dbFormat == "formatCourse" || dbFormat == "FormatWind" || dbFormat == "FormatRot") {
if (dbFormat == "FormatRot") {
chrtDataFmt = 2; // Chart is showing data of rotational <degree> format
} else {
chrtDataFmt = 1; // Chart is showing data of course / wind <degree> format
}
rngStep = M_TWOPI / 360.0 * 10.0; // +/-10 degrees on each end of chrtMid; we are calculating with SI values
} else {
chrtDataFmt = 0; // Chart is showing any other data format than <degree>
rngStep = 5.0; // +/- 10 for all other values (eg. m/s, m, K, mBar)
}
chrtMin = 0;
chrtMax = 0;
chrtMid = dbMAX_VAL;
chrtRng = dfltRng;
recalcRngCntr = true; // initialize <chrtMid> on first screen call
LOG_DEBUG(GwLog::DEBUG, "Chart Init: dWidth: %d, dHeight: %d, timAxis: %d, valAxis: %d, cStart {x,y}: %d, %d, dbname: %s, rngStep: %.4f", dWidth, dHeight, timAxis, valAxis, cStart.x, cStart.y, dbName, rngStep);
};
template <typename T>
@@ -78,114 +99,25 @@ Chart<T>::~Chart()
{
}
// chart time axis label + lines
// Perform all actions to draw chart
// Parameters are chart time interval, and the current boat data value to be printed
template <typename T>
void Chart<T>::drawChrtTimeAxis(int8_t chrtIntv)
void Chart<T>::showChrt(int8_t chrtIntv, GwApi::BoatValue currValue)
{
int timeRng;
float slots, intv, i;
char sTime[6];
getdisplay().setTextColor(fgColor);
if (chrtDir == 0) { // horizontal chart
getdisplay().fillRect(0, top, dWidth, 2, fgColor);
getdisplay().setFont(&Ubuntu_Bold8pt8b);
timeRng = chrtIntv * 4; // Chart time interval: [1] 4 min., [2] 8 min., [3] 12 min., [4] 16 min., [8] 32 min.
slots = (timAxis - xOffset) / 75.0; // number of axis labels
intv = timeRng / slots; // minutes per chart axis interval
i = timeRng; // Chart axis label start at -32, -16, -12, ... minutes
for (int j = 0; j < timAxis - 30; j += 75) {
LOG_DEBUG(GwLog::DEBUG, "ChartHdr: timAxis: %d, {x,y}: {%d,%d}, i: %.1f, j: %d, chrtIntv: %d, intv: %.1f, slots: %.1f", timAxis, cStart.x, cStart.y, i, j, chrtIntv, intv, slots);
if (chrtIntv < 3) {
snprintf(sTime, size_t(sTime), "-%.1f", i);
drawTextCenter(cStart.x + j - 8, cStart.y - 8, sTime); // time interval
} else {
snprintf(sTime, size_t(sTime), "-%.0f", std::round(i));
drawTextCenter(cStart.x + j - 4, cStart.y - 8, sTime); // time interval
}
getdisplay().drawLine(cStart.x + j, cStart.y, cStart.x + j, cStart.y + 5, fgColor);
i -= intv;
}
/* getdisplay().setFont(&Ubuntu_Bold8pt8b);
getdisplay().setCursor(timAxis - 8, cStart.y - 2);
getdisplay().print("min"); */
} else { // chrtDir == 1; vertical chart
getdisplay().setFont(&Ubuntu_Bold8pt8b);
timeRng = chrtIntv * 4; // Chart time interval: [1] 4 min., [2] 8 min., [3] 12 min., [4] 16 min., [8] 32 min.
slots = timAxis / 75.0; // number of axis labels
intv = timeRng / slots; // minutes per chart axis interval
i = 0; // Chart axis label start at -32, -16, -12, ... minutes
for (int j = 0; j < (timAxis - 75); j += 75) { // don't print time label at lower end
LOG_DEBUG(GwLog::DEBUG, "ChartHdr: timAxis: %d, {x,y}: {%d,%d}, i: %.1f, j: %d, chrtIntv: %d, intv: %.1f, slots: %.1f", timAxis, cStart.x, cStart.y, i, j, chrtIntv, intv, slots);
if (chrtIntv < 3) { // print 1 decimal if time range is single digit (4 or 8 minutes)
snprintf(sTime, size_t(sTime), "%.1f", i * -1);
} else {
snprintf(sTime, size_t(sTime), "%.0f", std::round(i) * -1);
}
drawTextCenter(dWidth / 2, cStart.y + j, sTime); // time value
getdisplay().drawLine(cStart.x, cStart.y + j, cStart.x + valAxis, cStart.y + j, fgColor); // Grid line
i += intv;
}
}
}
// chart value axis labels + lines
template <typename T>
void Chart<T>::drawChrtValAxis()
{
float slots;
int i, intv;
char sVal[6];
getdisplay().setFont(&Ubuntu_Bold10pt8b);
if (chrtDir == 0) { // horizontal chart
slots = valAxis / 60.0; // number of axis labels
intv = static_cast<int>(round(chrtRng / slots));
i = intv;
for (int j = 60; j < valAxis - 30; j += 60) {
LOG_DEBUG(GwLog::DEBUG, "ChartGrd: chrtRng: %d, intv: %d, slots: %.1f, valAxis: %d, i: %d, j: %d", chrtRng, intv, slots, valAxis, i, j);
getdisplay().fillRect(cStart.x - xOffset, cStart.y + j - 9, cStart.x - xOffset + 28, 12, bgColor); // Clear small area to remove potential chart lines
String sVal = String(static_cast<int>(round(i)));
getdisplay().setCursor((3 - sVal.length()) * 9, cStart.y + j + 4); // value right-formated
getdisplay().printf("%s", sVal); // Range value
i += intv;
getdisplay().drawLine(cStart.x + 2, cStart.y + j, cStart.x + timAxis, cStart.y + j, fgColor);
}
getdisplay().setFont(&Ubuntu_Bold12pt8b);
drawTextRalign(cStart.x + timAxis, cStart.y - 3, dataBuf.getName()); // buffer data name
} else { // chrtDir == 1; vertical chart
getdisplay().fillRect(cStart.x, top, valAxis, 2, fgColor); // top chart line
getdisplay().setCursor(cStart.x, cStart.y - 2);
snprintf(sVal, sizeof(sVal), "%d", dataBuf.getMin(numBufVals) / 1000);
getdisplay().printf("%s", sVal); // Range low end
snprintf(sVal, sizeof(sVal), "%.0f", round(chrtRng / 2));
drawTextCenter(cStart.x + (valAxis / 2), cStart.y - 10, sVal); // Range mid end
snprintf(sVal, sizeof(sVal), "%.0f", round(chrtRng));
drawTextRalign(cStart.x + valAxis - 1, cStart.y - 2, sVal); // Range high end
for (int j = 0; j <= valAxis; j += (valAxis / 2)) {
getdisplay().drawLine(cStart.x + j - 1, cStart.y, cStart.x + j - 1, cStart.y + timAxis, fgColor);
}
getdisplay().setFont(&Ubuntu_Bold12pt8b);
drawTextCenter(cStart.x + (valAxis / 4) + 4, cStart.y - 11, dataBuf.getName()); // buffer data name
LOG_DEBUG(GwLog::DEBUG, "ChartGrd: chrtRng: %d, intv: %d, slots: %.1f, valAxis: %d, i: %d, sVal.length: %d", chrtRng, intv, slots, valAxis, i, sizeof(sVal));
}
drawChrtTimeAxis(chrtIntv);
drawChrt(chrtIntv, currValue);
drawChrtValAxis();
}
// draw chart
template <typename T>
void Chart<T>::drawChrt(int8_t chrtIntv, GwApi::BoatValue currValue)
void Chart<T>::drawChrt(int8_t chrtIntv, GwApi::BoatValue& currValue)
{
float chrtScl; // Scale for data values in pixels per value
int chrtVal; // Current data value
static int chrtPrevVal; // Last data value in chart area
double chrtVal; // Current data value
double chrtScl; // Scale for data values in pixels per value
static double chrtPrevVal; // Last data value in chart area
bool bufDataValid = false; // Flag to indicate if buffer data is valid
static int numNoData; // Counter for multiple invalid data values in a row
// GwApi::BoatValue currValue; // temporary boat value to display current data buffer value
int x, y; // x and y coordinates for drawing
static int prevX, prevY; // Last x and y coordinates for drawing
@@ -194,13 +126,15 @@ void Chart<T>::drawChrt(int8_t chrtIntv, GwApi::BoatValue currValue)
count = dataBuf.getCurrentSize();
currIdx = dataBuf.getLastIdx();
numAddedBufVals = (currIdx - lastAddedIdx + bufSize) % bufSize; // Number of values added to buffer since last display
if (chrtIntv != oldChrtIntv || count == 1) {
// new data interval selected by user; this is only x * 230 values instead of 240 seconds (4 minutes) per interval step
intvBufSize = timAxis * chrtIntv;
numBufVals = min(count, (timAxis - 60) * chrtIntv);
// intvBufSize = timAxis * chrtIntv; // obsolete
numBufVals = min(count, (timAxis - 60) * chrtIntv); // keep free or release 60 values on chart for plotting of new values
bufStart = max(0, count - numBufVals);
lastAddedIdx = currIdx;
oldChrtIntv = chrtIntv;
} else {
numBufVals = numBufVals + numAddedBufVals;
lastAddedIdx = currIdx;
@@ -209,19 +143,16 @@ void Chart<T>::drawChrt(int8_t chrtIntv, GwApi::BoatValue currValue)
}
}
calcChrtRng();
chrtScl = float(valAxis) / float(chrtRng); // Chart scale: pixels per value step
calcChrtBorders(chrtMid, chrtMin, chrtMax, chrtRng);
chrtScl = double(valAxis) / chrtRng; // Chart scale: pixels per value step
// Do we have valid buffer data?
if (dataBuf.getMax() == dbMAX_VAL) {
// only <MAX_VAL> values in buffer -> no valid wind data available
if (dataBuf.getMax() == dbMAX_VAL) { // only <MAX_VAL> values in buffer -> no valid wind data available
bufDataValid = false;
} else if (!currValue.valid && !useSimuData) {
// currently no valid boat data available and no simulation mode
} else if (!currValue.valid && !useSimuData) { // currently no valid boat data available and no simulation mode
numNoData++;
bufDataValid = true;
if (numNoData > 3) {
// If more than 4 invalid values in a row, send message
if (numNoData > 3) { // If more than 4 invalid values in a row, send message
bufDataValid = false;
}
} else {
@@ -233,135 +164,451 @@ void Chart<T>::drawChrt(int8_t chrtIntv, GwApi::BoatValue currValue)
//***********************************************************************
if (bufDataValid) {
for (int i = 0; i < (numBufVals / chrtIntv); i++) {
chrtVal = static_cast<int>(dataBuf.get(bufStart + (i * chrtIntv))); // show the latest wind values in buffer; keep 1st value constant in a rolling buffer
chrtVal = dataBuf.get(bufStart + (i * chrtIntv)); // show the latest wind values in buffer; keep 1st value constant in a rolling buffer
if (chrtVal == dbMAX_VAL) {
chrtPrevVal = dbMAX_VAL;
} else {
chrtVal = static_cast<int>((chrtVal / 1000.0) + 0.5); // Convert to real value and round
if (chrtDir == 0) { // horizontal chart
x = cStart.x + i; // Position in chart area
y = cStart.y + (chrtVal * chrtScl); // value
if (chrtDataFmt == 0) {
y = cStart.y + static_cast<int>(((chrtVal - chrtMin) * chrtScl) + 0.5); // calculate chart point and round
} else { // degree type value
y = cStart.y + static_cast<int>((WindUtils::to2PI(chrtVal - chrtMin) * chrtScl) + 0.5); // calculate chart point and round
}
} else { // vertical chart
x = cStart.x + (chrtVal * chrtScl); // value
y = cStart.y + timAxis - i; // Position in chart area
if (chrtDataFmt == 0) {
x = cStart.x + static_cast<int>(((chrtVal - chrtMin) * chrtScl) + 0.5); // calculate chart point and round
} else { // degree type value
x = cStart.x + static_cast<int>((WindUtils::to2PI(chrtVal - chrtMin) * chrtScl) + 0.5); // calculate chart point and round
}
}
if (i >= (numBufVals / chrtIntv) - 10) // log chart data of 1 line (adjust for test purposes)
LOG_DEBUG(GwLog::DEBUG, "PageWindPlot Chart: i: %d, chrtVal: %d, {x,y} {%d,%d}", i, chrtVal, x, y);
if (i >= (numBufVals / chrtIntv) - 4) // log chart data of 1 line (adjust for test purposes)
LOG_DEBUG(GwLog::DEBUG, "PageWindPlot Chart: i: %d, chrtVal: %.4f, {x,y} {%d,%d}", i, chrtVal, x, y);
if ((i == 0) || (chrtPrevVal == dbMAX_VAL)) {
// just a dot for 1st chart point or after some invalid values
prevX = x;
prevY = y;
} else if (chrtDataFmt != 0) { // cross borders check for degree values; shift values to [-PI..0..PI]; when crossing borders, range is 2x PI degrees
// Normalize both values relative to chrtMin (shift range to start at 0)
double normCurr = WindUtils::to2PI(chrtVal - chrtMin);
double normPrev = WindUtils::to2PI(chrtPrevVal - chrtMin);
// Check if pixel positions are far apart (crossing chart boundary); happens when one value is near chrtMax and the other near chrtMin
bool crossedBorders = std::abs(normCurr - normPrev) > (chrtRng / 2.0);
if (crossedBorders) { // If current value crosses chart borders compared to previous value, split line
LOG_DEBUG(GwLog::DEBUG, "PageWindPlot Chart: crossedBorders: %d, chrtVal: %.2f, chrtPrevVal: %.2f", crossedBorders, chrtVal, chrtPrevVal);
bool wrappingFromHighToLow = normCurr < normPrev; // Determine which edge we're crossing
int xSplit = wrappingFromHighToLow ? (cStart.x + valAxis) : cStart.x;
getdisplay().drawLine(prevX, prevY, xSplit, y, fgColor);
getdisplay().drawLine(prevX, prevY - 1, ((xSplit != prevX) ? xSplit : xSplit - 1), ((xSplit != prevX) ? y - 1 : y), fgColor);
prevX = wrappingFromHighToLow ? cStart.x : (cStart.x + valAxis);
}
}
// Draw line with 2 pixels width + make sure vertical lines are drawn correctly
if (chrtDir == 0 || x == prevX) { // vertical line
getdisplay().drawLine(prevX, prevY, x, y, fgColor);
getdisplay().drawLine(prevX - 1, prevY, x - 1, y, fgColor);
// getdisplay().drawLine(prevX + 1, prevY, x - 1, y, fgColor);
} else if (chrtDir == 1 || x != prevX) { // line with some horizontal trend -> normal state
getdisplay().drawLine(prevX, prevY, x, y, fgColor);
getdisplay().drawLine(prevX, prevY - 1, x, y - 1, fgColor);
// getdisplay().drawLine(prevX, prevY + 1, x, y - 1, fgColor);
}
chrtPrevVal = chrtVal;
prevX = x;
prevY = y;
}
// Reaching chart area bottom end
if (i >= timAxis - 1) {
oldChrtIntv = 0; // force reset of buffer start and number of values to show in next display loop
if (chrtDataFmt == 1) { // degree of course or wind
recalcRngCntr = true;
LOG_DEBUG(GwLog::DEBUG, "PageWindPlot FreeTop: timAxis: %d, i: %d, bufStart: %d, numBufVals: %d, recalcRngCntr: %d", timAxis, i, bufStart, numBufVals, recalcRngCntr);
}
break;
}
}
// drawChrtValAxis();
// uses BoatValue temp variable <currValue> to format latest buffer value
// doesn't work unfortunately when 'simulation data' is active, because OBP60Formatter generates own simulation value in that case
uint16_t lastVal = dataBuf.getLast();
currValue.value = lastVal / 1000.0;
currValue.valid = (static_cast<int16_t>(lastVal) != dbMAX_VAL);
LOG_DEBUG(GwLog::DEBUG, "Chart drawChrt: lastVal: %d, currValue-value: %.1f, Valid: %d, Name: %s, Address: %p", lastVal, currValue.value,
currValue.valid, currValue.getName(), (void*)&currValue);
prntCurrValue(&currValue, { x, y });
currValue.value = dataBuf.getLast();
currValue.valid = currValue.value != dbMAX_VAL;
Chart<T>::prntCurrValue(currValue, { x, y });
LOG_DEBUG(GwLog::DEBUG, "Chart drawChrt: currValue-value: %.1f, Valid: %d, Name: %s, Address: %p", currValue.value, currValue.valid, currValue.getName(), (void*)&currValue);
} else {
// No valid data available
LOG_DEBUG(GwLog::LOG, "PageWindPlot: No valid data available");
getdisplay().setFont(&Ubuntu_Bold10pt8b);
int pX, pY;
if (chrtDir == 0) {
pX = dWidth / 2;
if (chrtDir == 0) { // horizontal chart
pX = cStart.x + (timAxis / 2);
pY = cStart.y + (valAxis / 2) - 10;
} else {
pX = valAxis / 2;
} else { // vertical chart
pX = cStart.x + (valAxis / 2);
pY = cStart.y + (timAxis / 2) - 10;
}
getdisplay().fillRect(pX - 33, pY - 10, 66, 24, commonData->bgcolor); // Clear area for message
getdisplay().fillRect(pX - 33, pY - 10, 66, 24, bgColor); // Clear area for message
drawTextCenter(pX, pY, "No data");
LOG_DEBUG(GwLog::LOG, "PageWindPlot: No valid data available");
}
}
// Get maximum difference of last <amount> of dataBuf ringbuffer values to center chart
template <typename T>
double Chart<T>::getRng(double center, size_t amount)
{
size_t count = dataBuf.getCurrentSize();
if (dataBuf.isEmpty() || amount <= 0) {
return dbMAX_VAL;
}
if (amount > count)
amount = count;
double value = 0;
double range = 0;
double maxRng = dbMIN_VAL;
// Start from the newest value (last) and go backwards x times
for (size_t i = 0; i < amount; i++) {
value = dataBuf.get(count - 1 - i);
if (value == dbMAX_VAL) {
continue; // ignore invalid values
}
range = abs(fmod((value - center + (M_TWOPI + M_PI)), M_TWOPI) - M_PI);
if (range > maxRng)
maxRng = range;
}
drawChrtValAxis();
if (maxRng > M_PI) {
maxRng = M_PI;
}
return (maxRng != dbMIN_VAL ? maxRng : dbMAX_VAL); // Return range from <mid> to <max>
}
// check and adjust chart range and set range borders and range middle
template <typename T>
void Chart<T>::calcChrtBorders(double& rngMid, double& rngMin, double& rngMax, double& rng)
{
if (chrtDataFmt == 0) {
// Chart data is of any type but 'degree'
double oldRngMin = rngMin;
double oldRngMax = rngMax;
// Chart starts at lowest range value, but at least '0' or includes even negative values
double currMinVal = dataBuf.getMin(numBufVals);
LOG_DEBUG(GwLog::DEBUG, "calcChrtRange0a: currMinVal: %.1f, currMaxVal: %.1f, rngMin: %.1f, rngMid: %.1f, rngMax: %.1f, rng: %.1f, rngStep: %.1f, oldRngMin: %.1f, oldRngMax: %.1f, dfltRng: %.1f, numBufVals: %d",
currMinVal, dataBuf.getMax(numBufVals), rngMin, rngMid, rngMax, rng, rngStep, oldRngMin, oldRngMax, dfltRng, numBufVals);
if (currMinVal != dbMAX_VAL) { // current min value is valid
if (currMinVal > 0 && dbMIN_VAL == 0) { // Chart range starts at least at '0' or includes negative values
rngMin = 0;
} else if (currMinVal < oldRngMin || (oldRngMin < 0 && (currMinVal > (oldRngMin + rngStep)))) { // decrease rngMin if required or increase if lowest value is higher than old rngMin
rngMin = std::floor(currMinVal / rngStep) * rngStep;
}
} // otherwise keep rngMin unchanged
double currMaxVal = dataBuf.getMax(numBufVals);
if (currMaxVal != dbMAX_VAL) { // current max value is valid
if ((currMaxVal > oldRngMax) || (currMaxVal < (oldRngMax - rngStep))) { // increase rngMax if required or decrease if lowest value is lower than old rngMax
rngMax = std::ceil(currMaxVal / rngStep) * rngStep;
rngMax = std::max(rngMax, rngMin + dfltRng); // keep at least default chart range
}
} // otherwise keep rngMax unchanged
rngMid = (rngMin + rngMax) / 2.0;
rng = rngMax - rngMin;
LOG_DEBUG(GwLog::DEBUG, "calcChrtRange1a: currMinVal: %.1f, currMaxVal: %.1f, rngMin: %.1f, rngMid: %.1f, rngMax: %.1f, rng: %.1f, rngStep: %.1f, oldRngMin: %.1f, oldRngMax: %.1f, dfltRng: %.1f, numBufVals: %d",
currMinVal, currMaxVal, rngMin, rngMid, rngMax, rng, rngStep, oldRngMin, oldRngMax, dfltRng, numBufVals);
} else {
if (chrtDataFmt == 1) {
// Chart data is of type 'course' or 'wind'
if ((count == 1 && rngMid == 0) || rngMid == dbMAX_VAL) {
recalcRngCntr = true; // initialize <rngMid>
}
// Set rngMid
if (recalcRngCntr) {
rngMid = dataBuf.getMid(numBufVals);
if (rngMid == dbMAX_VAL) {
rngMid = 0;
} else {
rngMid = std::round(rngMid / rngStep) * rngStep; // Set new center value; round to next <rngStep> value
// Check if range between 'min' and 'max' is > 180° or crosses '0'
rngMin = dataBuf.getMin(numBufVals);
rngMax = dataBuf.getMax(numBufVals);
rng = (rngMax >= rngMin ? rngMax - rngMin : M_TWOPI - rngMin + rngMax);
rng = max(rng, dfltRng); // keep at least default chart range
if (rng > M_PI) { // If wind range > 180°, adjust wndCenter to smaller wind range end
rngMid = WindUtils::to2PI(rngMid + M_PI);
}
}
recalcRngCntr = false; // Reset flag for <rngMid> determination
LOG_DEBUG(GwLog::DEBUG, "calcChrtRange1b: rngMid: %.1f°, rngMin: %.1f°, rngMax: %.1f°, rng: %.1f°, rngStep: %.1f°", rngMid * RAD_TO_DEG, rngMin * RAD_TO_DEG, rngMax * RAD_TO_DEG,
rng * RAD_TO_DEG, rngStep * RAD_TO_DEG);
}
} else if (chrtDataFmt == 2) {
// Chart data is of type 'rotation'; then we want to have <rndMid> always to be '0'
rngMid = 0;
}
// check and adjust range between left, center, and right chart limit
double halfRng = rng / 2.0; // we calculate with range between <rngMid> and edges
double diffRng = getRng(rngMid, numBufVals);
// LOG_DEBUG(GwLog::DEBUG, "calcChrtRange2: diffRng: %.1f°, halfRng: %.1f°", diffRng * RAD_TO_DEG, halfRng * RAD_TO_DEG);
diffRng = (diffRng == dbMAX_VAL ? 0 : std::ceil(diffRng / rngStep) * rngStep);
// LOG_DEBUG(GwLog::DEBUG, "calcChrtRange2: diffRng: %.1f°, halfRng: %.1f°", diffRng * RAD_TO_DEG, halfRng * RAD_TO_DEG);
if (diffRng > halfRng) {
halfRng = diffRng; // round to next <rngStep> value
} else if (diffRng + rngStep < halfRng) { // Reduce chart range for higher resolution if possible
halfRng = max(dfltRng / 2.0, diffRng);
}
rngMin = WindUtils::to2PI(rngMid - halfRng);
rngMax = (halfRng < M_PI ? rngMid + halfRng : rngMid + halfRng - (M_TWOPI / 360)); // if chart range is 360°, then make <rngMax> 1° smaller than <rngMin>
rngMax = WindUtils::to2PI(rngMax);
// LOG_DEBUG(GwLog::DEBUG, "calcChrtRange2: diffRng: %.1f°, halfRng: %.1f°", diffRng * RAD_TO_DEG, halfRng * RAD_TO_DEG);
rng = halfRng * 2.0;
LOG_DEBUG(GwLog::DEBUG, "calcChrtRange2b: rngMid: %.1f°, rngMin: %.1f°, rngMax: %.1f°, diffRng: %.1f°, rng: %.1f°, rngStep: %.1f°", rngMid * RAD_TO_DEG, rngMin * RAD_TO_DEG, rngMax * RAD_TO_DEG,
diffRng * RAD_TO_DEG, rng * RAD_TO_DEG, rngStep * RAD_TO_DEG);
}
}
// chart time axis label + lines
template <typename T>
void Chart<T>::drawChrtTimeAxis(int8_t chrtIntv)
{
int timeRng;
float slots, intv, i;
char sTime[6];
getdisplay().setFont(&Ubuntu_Bold8pt8b);
getdisplay().setTextColor(fgColor);
if (chrtDir == 0) { // horizontal chart
getdisplay().fillRect(0, top, dWidth, 2, fgColor);
timeRng = chrtIntv * 4; // Chart time interval: [1] 4 min., [2] 8 min., [3] 12 min., [4] 16 min., [8] 32 min.
slots = timAxis / 80.0; // number of axis labels
intv = timeRng / slots; // minutes per chart axis interval
i = timeRng; // Chart axis label start at -32, -16, -12, ... minutes
for (int j = 0; j < timAxis - 30; j += 80) { // fill time axis with values but keep area free on right hand side for value label
// LOG_DEBUG(GwLog::DEBUG, "ChartTimeAxis: timAxis: %d, {x,y}: {%d,%d}, i: %.1f, j: %d, chrtIntv: %d, intv: %.1f, slots: %.1f", timAxis, cStart.x, cStart.y, i, j, chrtIntv, intv, slots);
// Format time label based on interval
if (chrtIntv < 3) {
snprintf(sTime, sizeof(sTime), "-%.1f", i);
} else {
snprintf(sTime, sizeof(sTime), "-%.0f", std::round(i));
}
// draw text with appropriate offset
// int tOffset = (j == 0) ? 13 : (chrtIntv < 3 ? -4 : -4);
int tOffset = j == 0 ? 13 : -4;
drawTextCenter(cStart.x + j + tOffset, cStart.y - 8, sTime);
getdisplay().drawLine(cStart.x + j, cStart.y, cStart.x + j, cStart.y + 5, fgColor); // draw short vertical time mark
i -= intv;
}
} else { // chrtDir == 1; vertical chart
timeRng = chrtIntv * 4; // chart time interval: [1] 4 min., [2] 8 min., [3] 12 min., [4] 16 min., [8] 32 min.
slots = timAxis / 75.0; // number of axis labels
intv = timeRng / slots; // minutes per chart axis interval
i = -intv; // chart axis label start at -32, -16, -12, ... minutes
for (int j = 75; j < (timAxis - 75); j += 75) { // don't print time label at upper and lower end of time axis
if (chrtIntv < 3) { // print 1 decimal if time range is single digit (4 or 8 minutes)
snprintf(sTime, sizeof(sTime), "%.1f", i);
} else {
snprintf(sTime, sizeof(sTime), "%.0f", std::floor(i));
}
getdisplay().drawLine(cStart.x, cStart.y + j, cStart.x + valAxis, cStart.y + j, fgColor); // Grid line
if (chrtSz == 0) { // full size chart
getdisplay().fillRect(0, cStart.y + j - 9, 32, 15, bgColor); // clear small area to remove potential chart lines
getdisplay().setCursor((4 - strlen(sTime)) * 7, cStart.y + j + 3); // time value; print left screen; value right-formated
getdisplay().printf("%s", sTime); // Range value
} else if (chrtSz == 2) { // half size chart; right side
drawTextCenter(dWidth / 2, cStart.y + j, sTime); // time value; print mid screen
}
i -= intv;
}
}
}
// chart value axis labels + lines
template <typename T>
void Chart<T>::drawChrtValAxis()
{
double slots;
int i, intv;
double cVal, cchrtRng, crngMin;
char sVal[6];
std::unique_ptr<GwApi::BoatValue> tmpBVal; // Temp variable to get formatted and converted data value from OBP60Formatter
tmpBVal = std::unique_ptr<GwApi::BoatValue>(new GwApi::BoatValue(dataBuf.getName()));
tmpBVal->setFormat(dataBuf.getFormat());
tmpBVal->valid = true;
if (chrtDir == 0) { // horizontal chart
slots = valAxis / 60.0; // number of axis labels
tmpBVal->value = chrtRng;
cchrtRng = formatValue(tmpBVal.get(), *commonData).cvalue; // value (converted)
intv = static_cast<int>(round(cchrtRng / slots));
i = intv;
getdisplay().setFont(&Ubuntu_Bold10pt8b);
for (int j = 60; j < valAxis - 30; j += 60) {
LOG_DEBUG(GwLog::DEBUG, "ChartValAxis: chrtRng: %.2f, cchrtRng: %.2f, intv: %d, slots: %.1f, valAxis: %d, i: %d, j: %d", chrtRng, cchrtRng, intv, slots, valAxis, i, j);
getdisplay().drawLine(cStart.x, cStart.y + j, cStart.x + timAxis, cStart.y + j, fgColor);
getdisplay().fillRect(cStart.x, cStart.y + j - 9, cStart.x + 32, 18, bgColor); // Clear small area to remove potential chart lines
String sVal = String(i);
getdisplay().setCursor((3 - sVal.length()) * 8, cStart.y + j + 6); // value right-formated
getdisplay().printf("%s", sVal); // Range value
i += intv;
}
getdisplay().setFont(&Ubuntu_Bold12pt8b);
drawTextRalign(cStart.x + timAxis, cStart.y - 3, dbName); // buffer data name
} else { // chrtDir == 1; vertical chart
getdisplay().setFont(&Ubuntu_Bold10pt8b);
getdisplay().fillRect(cStart.x, top, valAxis, 2, fgColor); // top chart line
getdisplay().setCursor(cStart.x, cStart.y - 2);
tmpBVal->value = chrtMin;
cVal = formatValue(tmpBVal.get(), *commonData).cvalue; // value (converted)
snprintf(sVal, sizeof(sVal), "%.0f", round(cVal));
getdisplay().printf("%s", sVal); // Range low end
tmpBVal->value = chrtMid;
cVal = formatValue(tmpBVal.get(), *commonData).cvalue; // value (converted)
snprintf(sVal, sizeof(sVal), "%.0f", round(cVal));
drawTextCenter(cStart.x + (valAxis / 2), cStart.y - 10, sVal); // Range mid end
tmpBVal->value = chrtMax;
cVal = formatValue(tmpBVal.get(), *commonData).cvalue; // value (converted)
snprintf(sVal, sizeof(sVal), "%.0f", round(cVal));
drawTextRalign(cStart.x + valAxis - 1, cStart.y - 2, sVal); // Range high end
for (int j = 0; j <= valAxis + 2; j += ((valAxis + 2) / 2)) {
getdisplay().drawLine(cStart.x + j, cStart.y, cStart.x + j, cStart.y + timAxis, fgColor);
}
if (chrtSz == 0) {
getdisplay().setFont(&Ubuntu_Bold12pt8b);
drawTextCenter(cStart.x + (valAxis / 4) + 5, cStart.y - 11, dbName); // buffer data name
}
LOG_DEBUG(GwLog::DEBUG, "ChartGrd: chrtRng: %.2f, intv: %d, slots: %.1f, valAxis: %d, i: %d", chrtRng, intv, slots, valAxis, i);
}
}
// Print current data value
template <typename T>
void Chart<T>::prntCurrValue(GwApi::BoatValue* currValue, const Pos chrtPos)
void Chart<T>::prntCurrValue(GwApi::BoatValue& currValue, const Pos chrtPos)
{
int currentZone;
static int lastZone = 0;
static bool flipVal = false;
int xPosVal;
static const int yPosVal = (chrtDir == 0) ? cStart.y + valAxis - 5 : cStart.y + timAxis - 5;
xPosVal = cStart.x + 1;
// flexible move of location for latest boat data value, in case chart data is printed at the current location
/* xPosVal = flipVal ? 8 : valAxis - 135;
currentZone = (chrtPos.y >= yPosVal - 32) && (chrtPos.y <= yPosVal + 6) && (chrtPos.x >= xPosVal - 4) && (chrtPos.x <= xPosVal + 146) ? 1 : 0; // Define current zone for data value
if (currentZone != lastZone) {
// Only flip when x moves to a different zone
if ((chrtPos.y >= yPosVal - 32) && (chrtPos.y <= yPosVal + 6) && (chrtPos.x >= xPosVal - 3) && (chrtPos.x <= xPosVal + 146)) {
flipVal = !flipVal;
xPosVal = flipVal ? 8 : valAxis - 135;
}
}
lastZone = currentZone; */
xPosVal = (chrtDir == 0) ? cStart.x + timAxis - 117 : cStart.x + valAxis - 117;
FormattedData frmtDbData = formatValue(currValue, *commonData);
FormattedData frmtDbData = formatValue(&currValue, *commonData);
double testdbValue = frmtDbData.value;
String sdbValue = frmtDbData.svalue; // value (string)
String dbUnit = frmtDbData.unit; // Unit of value
LOG_DEBUG(GwLog::DEBUG, "Chart CurrValue: dbValue: %.2f, sdbValue: %s, fmrtDbValue: %.2f, dbFormat: %s, dbUnit: %s, Valid: %d, Name: %s, Address: %p", currValue->value, sdbValue,
testdbValue, currValue->getFormat(), dbUnit, currValue->valid, currValue->getName(), (void*)currValue);
getdisplay().fillRect(xPosVal - 3, yPosVal - 34, 118, 40, bgColor); // Clear area for TWS value
LOG_DEBUG(GwLog::DEBUG, "Chart CurrValue: dbValue: %.2f, sdbValue: %s, fmrtDbValue: %.2f, dbFormat: %s, dbUnit: %s, Valid: %d, Name: %s, Address: %p", currValue.value, sdbValue,
testdbValue, currValue.getFormat(), dbUnit, currValue.valid, currValue.getName(), currValue);
getdisplay().fillRect(xPosVal, yPosVal - 34, 121, 40, bgColor); // Clear area for TWS value
getdisplay().setFont(&DSEG7Classic_BoldItalic16pt7b);
getdisplay().setCursor(xPosVal, yPosVal);
if (useSimuData)
getdisplay().printf("%2.1f", currValue->value); // Value
else
getdisplay().setCursor(xPosVal + 1, yPosVal);
if (useSimuData) {
getdisplay().printf("%2.1f", currValue.value); // Value
} else {
getdisplay().print(sdbValue); // Value
// getdisplay().setFont(&Ubuntu_Bold12pt8b);
// getdisplay().setCursor(xPosVal + 76, yPosVal - 14);
// getdisplay().print(dbName); // Name
}
getdisplay().setFont(&Ubuntu_Bold10pt8b);
getdisplay().setCursor(xPosVal + 76, yPosVal - 17);
getdisplay().print(dbName); // Name
getdisplay().setFont(&Ubuntu_Bold8pt8b);
getdisplay().setCursor(xPosVal + 76, yPosVal + 1);
getdisplay().print(dbUnit); // Unit
}
// check and adjust chart range
// Identify Min and Max values of range for course data and select them considering smallest gap
// E.g., Min=30°, Max=270° will be converted to smaller range of Min=270° and Max=30°
// obsolete; creates random results by purpose with large data arrays when data is equally distributed
template <typename T>
void Chart<T>::calcChrtRng()
void Chart<T>::getAngleMinMax(const std::vector<double>& angles, double& rngMin, double& rngMax)
{
int diffRng;
diffRng = dataBuf.getMax(numBufVals) / 1000;
if (diffRng > chrtRng) {
chrtRng = int((diffRng + (diffRng >= 0 ? 9 : -1)) / 10) * 10; // Round up to next 10 value
} else if (diffRng + 10 < chrtRng) { // Reduce chart range for higher resolution if possible
chrtRng = max(dfltRng, int((diffRng + (diffRng >= 0 ? 9 : -1)) / 10) * 10);
if (angles.empty()) {
rngMin = 0;
rngMax = 0;
return;
}
LOG_DEBUG(GwLog::DEBUG, "Chart Range: diffRng: %d, chrtRng: %d, Min: %.0f, Max: %.0f", diffRng, chrtRng, dataBuf.getMin(numBufVals) / 1000, dataBuf.getMax(numBufVals) / 1000);
if (angles.size() == 1) {
rngMin = angles[0];
rngMax = angles[0];
return;
}
// Sort angles
std::vector<double> sorted = angles;
std::sort(sorted.begin(), sorted.end());
// Find the largest gap between consecutive angles
double maxGap = 0.0;
int maxGapIndex = 0;
for (size_t i = 0; i < sorted.size(); i++) {
double next = sorted[(i + 1) % sorted.size()];
double curr = sorted[i];
// Calculate gap (wrapping around at 360°/2*Pi)
double gap = (i == sorted.size() - 1) ? (M_TWOPI - curr + next) : (next - curr);
if (gap > maxGap) {
maxGap = gap;
maxGapIndex = i;
}
}
// The range is on the opposite side of the largest gap
// Min is after the gap, max is before it
rngMin = sorted[(maxGapIndex + 1) % sorted.size()];
rngMax = sorted[maxGapIndex];
}
// Explicitly instantiate class with required data types to avoid linker errors
template class Chart<uint16_t>;
template class Chart<int16_t>;
// --- Class Chart ---------------

View File

@@ -1,7 +1,5 @@
// Function lib for display of boat data in various chart formats
#pragma once
#include <stdint.h>
#include <Arduino.h>
#include "Pagedata.h"
struct Pos {
@@ -20,7 +18,7 @@ protected:
RingBuffer<T> &dataBuf; // Buffer to display
int8_t chrtDir; // Chart timeline direction: [0] = horizontal, [1] = vertical
int8_t chrtSz; // Chart size: [0] = full size, [1] = half size left/top, [2] half size right/bottom
int dfltRng; // Default range of chart, e.g. 30 = [0..30]
double dfltRng; // Default range of chart, e.g. 30 = [0..30]
uint16_t fgColor; // color code for any screen writing
uint16_t bgColor; // color code for screen background
bool useSimuData; // flag to indicate if simulation data is active
@@ -34,12 +32,18 @@ protected:
int dHeight; // Display height
int timAxis, valAxis; // size of time and value chart axis
Pos cStart; // start point of chart area
int chrtRng; // Range of buffer values from min to max value
double chrtRng; // Range of buffer values from min to max value
double chrtMin; // Range low end value
double chrtMax; // Range high end value
double chrtMid; // Range mid value
double rngStep; // Defines the step of adjustment (e.g. 10 m/s) for value axis range
bool recalcRngCntr = false; // Flag for re-calculation of mid value of chart for wind data types
String dbName, dbFormat; // Name and format of data buffer
int16_t dbMAX_VAL; // Highest possible value of buffer of type <T> -> indicates invalid value in buffer
int chrtDataFmt; // Data format of chart: [0] size values; [1] degree of course or wind; [2] rotational degrees
double dbMIN_VAL; // Lowest possible value of buffer of type <T>
double dbMAX_VAL; // Highest possible value of buffer of type <T>; indicates invalid value in buffer
size_t bufSize; // History buffer size: 1.920 values for 32 min. history chart
int intvBufSize; // Buffer size used for currently selected time interval
int count; // current size of buffer
int numBufVals; // number of wind values available for current interval selection
int bufStart; // 1st data value in buffer to show
@@ -49,14 +53,17 @@ protected:
size_t lastAddedIdx = 0; // Last index of TWD history buffer when new data was added
int oldChrtIntv = 0; // remember recent user selection of data interval
void calcChrtRng();
void drawChrtValAxis();
void drawChrt(int8_t chrtIntv, GwApi::BoatValue& currValue); // Draw chart line
double getRng(double center, size_t amount); // Calculate range between chart center and edges
void calcChrtBorders(double& rngMid, double& rngMin, double& rngMax, double& rng); // Calculate chart points for value axis and return range between <min> and <max>
void drawChrtTimeAxis(int8_t chrtIntv); // Draw time axis of chart, value and lines
void drawChrtValAxis(); // Draw value axis of chart, value and lines
void prntCurrValue(GwApi::BoatValue& currValue, Pos chrtPos); // Add current boat data value to chart
void getAngleMinMax(const std::vector<double>& angles, double& rngMin, double& rngMax); // Identify Min and Max for course data with smallest gap
public:
Chart(RingBuffer<T>& dataBuf, int8_t chrtDir, int8_t chrtSz, int dfltRng, CommonData& common, bool useSimuData);
Chart(RingBuffer<T>& dataBuf, int8_t chrtDir, int8_t chrtSz, double dfltRng, CommonData& common, bool useSimuData); // Chart object of data chart
~Chart();
void drawChrtTimeAxis(int8_t chrtIntv);
void drawChrt(int8_t chrtIntv, GwApi::BoatValue currValue);
void prntCurrValue(GwApi::BoatValue* currValue, Pos chrtPos);
void showChrt(int8_t chrtIntv, GwApi::BoatValue currValue); // Perform all actions to draw chart
};

View File

@@ -184,22 +184,24 @@ public:
GwConfigHandler* config = commonData->config;
GwLog* logger = commonData->logger;
static RingBuffer<int16_t>* wdHstry; // Wind direction data buffer
static RingBuffer<uint16_t>* wdHstry; // Wind direction data buffer
static RingBuffer<uint16_t>* wsHstry; // Wind speed data buffer
static String wdName, wdFormat; // Wind direction name and format
static String wsName, wsFormat; // Wind speed name and format
static int16_t wdMAX_VAL; // Max. value of wd history buffer, indicating invalid values
static std::unique_ptr<Chart<uint16_t>> twsFlChart; // chart object for wind speed chart
static std::unique_ptr<Chart<int16_t>> twdHfChart; // chart object for wind direction chart
static std::unique_ptr<Chart<uint16_t>> twsHfChart; // chart object for wind speed chart
float wsValue; // Wind speed value in chart area
String wsUnit; // Wind speed unit in chart area
static std::unique_ptr<Chart<uint16_t>> twdFlChart; // chart object for wind direction chart, full size
static std::unique_ptr<Chart<uint16_t>> twsFlChart; // chart object for wind speed chart, full size
static std::unique_ptr<Chart<uint16_t>> twdHfChart; // chart object for wind direction chart, half size
static std::unique_ptr<Chart<uint16_t>> twsHfChart; // chart object for wind speed chart, half size
// float wsValue; // Wind speed value in chart area
// String wsUnit; // Wind speed unit in chart area
static GwApi::BoatValue* wdBVal = new GwApi::BoatValue("TWD"); // temp BoatValue for wind direction unit identification; required by OBP60Formater
static GwApi::BoatValue* wsBVal = new GwApi::BoatValue("TWS"); // temp BoatValue for wind speed unit identification; required by OBP60Formater
// current boat data values; TWD/AWD only for validation test
const int numBoatData = 2;
GwApi::BoatValue* bvalue;
bool BDataValid[numBoatData];
// current boat data values
const int numBoatData = 4;
GwApi::BoatValue* bvalue[numBoatData];
// bool BDataValid[numBoatData];
static bool isInitialized = false; // Flag to indicate that page is initialized
static bool wndDataValid = false; // Flag to indicate if wind data is valid
@@ -224,7 +226,10 @@ public:
static int wndCenter; // chart wind center value position
static int wndLeft; // chart wind left value position
static int wndRight; // chart wind right value position
static int chrtRng; // Range of wind values from mid wind value to min/max wind value in degrees
static int chrtRng; // Range of wind values from min to max wind value in degrees
double dfltRngWd; // default range for course chart from min to max value in degrees
double dfltRngWs; // defautl range for wind speed chart from min to max value in m/s
int diffRng; // Difference between mid and current wind value
static const int dfltRng = 60; // Default range for chart
int midWndDir; // New value for wndCenter after chart start / shift
@@ -246,7 +251,7 @@ public:
numNoData = 0;
bufStart = 0;
oldDataIntv = 0;
wsValue = 0;
// wsValue = 0;
numAddedBufVals, currIdx, lastIdx = 0;
wndCenter = INT_MAX;
midWndDir = 0;
@@ -256,10 +261,10 @@ public:
isInitialized = true; // Set flag to indicate that page is now initialized
}
// read boat data values; TWD/AWS only for validation test
// read boat data values
for (int i = 0; i < numBoatData; i++) {
bvalue = pageData.values[i];
BDataValid[i] = bvalue->valid;
bvalue[i] = pageData.values[i];
// BDataValid[i] = bvalue->valid;
}
// Optical warning by limit violation (unused)
@@ -280,13 +285,17 @@ public:
wsHstry->getMetaData(wsName, wsFormat);
wdMAX_VAL = wdHstry->getMaxVal();
bufSize = wdHstry->getCapacity();
wsBVal->setFormat(wsHstry->getFormat());
wdBVal->setFormat(wdFormat);
wsBVal->setFormat(wsFormat);
lastAddedIdx = wdHstry->getLastIdx();
LOG_DEBUG(GwLog::DEBUG, "PageWindPlot twsChart: *wsHstry: %p", wsHstry);
twsFlChart = std::unique_ptr<Chart<uint16_t>>(new Chart<uint16_t>(*wsHstry, 0, 0, 15, *commonData, useSimuData));
twdHfChart = std::unique_ptr<Chart<int16_t>>(new Chart<int16_t>(*wdHstry, 1, 1, 15, *commonData, useSimuData));
twsHfChart = std::unique_ptr<Chart<uint16_t>>(new Chart<uint16_t>(*wsHstry, 1, 2, 15, *commonData, useSimuData));
dfltRngWd = 60.0 * DEG_TO_RAD; // default range for course chart: 60°
dfltRngWs = 7.5; // default range for wind speed chart: 7.5 m/s
LOG_DEBUG(GwLog::DEBUG, "PageWindPlot: *wdHstry: %p, *wsHstry: %p", wdHstry, wsHstry);
twdFlChart = std::unique_ptr<Chart<uint16_t>>(new Chart<uint16_t>(*wdHstry, 1, 0, dfltRngWd, *commonData, useSimuData));
twsFlChart = std::unique_ptr<Chart<uint16_t>>(new Chart<uint16_t>(*wsHstry, 0, 0, dfltRngWs, *commonData, useSimuData));
twdHfChart = std::unique_ptr<Chart<uint16_t>>(new Chart<uint16_t>(*wdHstry, 1, 1, dfltRngWd, *commonData, useSimuData));
twsHfChart = std::unique_ptr<Chart<uint16_t>>(new Chart<uint16_t>(*wsHstry, 1, 2, dfltRngWs, *commonData, useSimuData));
oldShowTruW = showTruW;
}
@@ -295,7 +304,7 @@ public:
getdisplay().setPartialWindow(0, 0, width, height); // Set partial update
getdisplay().setTextColor(commonData->fgcolor);
if (chrtMode == 'D') {
/* if (chrtMode == 'D') {
// Identify buffer size and buffer start position for chart
count = wdHstry->getCurrentSize();
currIdx = wdHstry->getLastIdx();
@@ -478,7 +487,7 @@ public:
} else {
getdisplay().printf("%4.1f", wsValue); // Value, round to 1 decimal
}
} */
} */ /*
getdisplay().setFont(&Ubuntu_Bold12pt8b);
getdisplay().setCursor(xPosTws + 82, yPosTws - 14);
getdisplay().print(wsName); // Name
@@ -512,19 +521,30 @@ public:
}
getdisplay().printf("%3d", chrtLbl); // Wind value label
}
*/
if (chrtMode == 'D') {
wdBVal->value = wdHstry->getLast();
wdBVal->valid = wdBVal->value != wdHstry->getMaxVal();
// twdFlChart->showChrt(dataIntv, *wdBVal);
twdFlChart->showChrt(dataIntv, *bvalue[0]);
} else if (chrtMode == 'S') {
// wsValue = wsHstry->getLast();
twsFlChart->drawChrtTimeAxis(dataIntv);
LOG_DEBUG(GwLog::DEBUG, "PageWindPlot chart: wsBVal.name: %s, format: %s, wsBVal.value: %.1f, address: %p", wsBVal->getName(), wsBVal->getFormat(), wsBVal->value, wsBVal);
twsFlChart->drawChrt(dataIntv, *wsBVal);
wsBVal->value = wsHstry->getLast();
wsBVal->valid = wsBVal->value != wsHstry->getMaxVal();
// twsFlChart->showChrt(dataIntv, *wsBVal);
twsFlChart->showChrt(dataIntv, *bvalue[1]);
} else if (chrtMode == 'B') {
// wsValue = wsHstry->getLast();
twdHfChart->drawChrtTimeAxis(dataIntv);
twsHfChart->drawChrtTimeAxis(dataIntv);
LOG_DEBUG(GwLog::DEBUG, "PageWindPlot chart: wsBVal.name: %s, format: %s, wsBVal.value: %.1f, address: %p", wsBVal->getName(), wsBVal->getFormat(), wsBVal->value, wsBVal);
twdHfChart->drawChrt(dataIntv, *wsBVal);
twsHfChart->drawChrt(dataIntv, *wsBVal);
wdBVal->value = wdHstry->getLast();
wdBVal->valid = wdBVal->value != wdHstry->getMaxVal();
wsBVal->value = wsHstry->getLast();
wsBVal->valid = wsBVal->value != wsHstry->getMaxVal();
LOG_DEBUG(GwLog::DEBUG, "PageWindPlot showChrt: wsBVal.name: %s, format: %s, wsBVal.value: %.1f, valid: %d, address: %p", wsBVal->getName(), wsBVal->getFormat(), wsBVal->value,
wsBVal->valid, wsBVal);
// twdHfChart->showChrt(dataIntv, *wdBVal);
// twsHfChart->showChrt(dataIntv, *wsBVal);
twdHfChart->showChrt(dataIntv, *bvalue[0]);
twsHfChart->showChrt(dataIntv, *bvalue[1]);
}
LOG_DEBUG(GwLog::DEBUG, "PageWindPlot time: %ld", millis() - timer);
@@ -546,7 +566,7 @@ PageDescription registerPageWindPlot(
"WindPlot", // Page name
createPage, // Action
0, // Number of bus values depends on selection in Web configuration
{ "TWD", "AWD" }, // Bus values we need in the page
{ "TWD", "TWS", "AWD", "AWS" }, // Bus values we need in the page
true // Show display header on/off
);

View File

@@ -806,7 +806,7 @@ void OBP60Task(GwApi *api){
if (calcTrueWnds) {
trueWind.addTrueWind(api, &boatValues, logger);
}
// Handle history buffers for TWD, TWS for wind plot page and other usage
// Handle history buffers for certain boat data for windplot page and other usage
hstryBufList.handleHstryBuf(useSimuData);
// Clear display