1
0
mirror of https://github.com/thooge/esp32-nmea2000-obp60.git synced 2026-02-11 07:03:07 +01:00

Update data calibration: calibration in main loop on boat data values:

- modified code to calibrate affected boat data each second in main obp60task loop;
- removed individual calibration call in all pages
- moved code from BoatDataCalibration to OBPDataOperations
- added DBS and HDT to list of supported data calibration types
- changed output format for wind angles from [-180..180] to [0..360], because negative value are not displayed properly on pages
This commit is contained in:
Ulrich Meine
2026-01-17 12:25:57 +01:00
parent da975b5175
commit b8e64ff64c
17 changed files with 300 additions and 309 deletions

View File

@@ -1,5 +1,221 @@
#include "OBPDataOperations.h"
#include "BoatDataCalibration.h" // Functions lib for data instance calibration
//#include "BoatDataCalibration.h" // Functions lib for data instance calibration
// --- Class CalibrationData ---------------
CalibrationData::CalibrationData(GwLog* log)
{
logger = log;
}
void CalibrationData::readConfig(GwConfigHandler* config)
// Initial load of calibration data into internal list
// This method is called once at init phase of <obp60task> to read the configuration values
{
std::string instance;
double offset;
double slope;
double smooth;
String calInstance = "";
String calOffset = "";
String calSlope = "";
String calSmooth = "";
// Load user format configuration values
String lengthFormat = config->getString(config->lengthFormat); // [m|ft]
String distanceFormat = config->getString(config->distanceFormat); // [m|km|nm]
String speedFormat = config->getString(config->speedFormat); // [m/s|km/h|kn]
String windspeedFormat = config->getString(config->windspeedFormat); // [m/s|km/h|kn|bft]
String tempFormat = config->getString(config->tempFormat); // [K|C|F]
// Read calibration settings for data instances
for (int i = 0; i < MAX_CALIBRATION_DATA; i++) {
calInstance = "calInstance" + String(i + 1);
calOffset = "calOffset" + String(i + 1);
calSlope = "calSlope" + String(i + 1);
calSmooth = "calSmooth" + String(i + 1);
instance = std::string(config->getString(calInstance, "---").c_str());
if (instance == "---") {
LOG_DEBUG(GwLog::LOG, "No calibration data for instance no. %d", i + 1);
continue;
}
calibrationMap[instance] = { 0.0f, 1.0f, 1.0f, 0.0f, false };
offset = (config->getString(calOffset, "")).toDouble();
slope = (config->getString(calSlope, "")).toDouble();
smooth = (config->getString(calSmooth, "")).toInt(); // user input is int; further math is done with double
if (slope == 0.0) {
slope = 1.0; // eliminate adjustment if user selected "0" -> that would set the calibrated value to "0"
}
// Convert calibration values from user input format to internal standard SI format
if (instance == "AWS" || instance == "TWS") {
if (windspeedFormat == "m/s") {
// No conversion needed
} else if (windspeedFormat == "km/h") {
offset /= 3.6; // Convert km/h to m/s
} else if (windspeedFormat == "kn") {
offset /= 1.94384; // Convert kn to m/s
} else if (windspeedFormat == "bft") {
offset *= 2 + (offset / 2); // Convert Bft to m/s (approx) -> to be improved
}
} else if (instance == "AWA" || instance == "COG" || instance == "HDM" || instance == "HDT" || instance == "PRPOS" || instance == "RPOS" || instance == "TWA" || instance == "TWD") {
offset *= DEG_TO_RAD; // Convert deg to rad
} else if (instance == "DBS" || instance == "DBT") {
if (lengthFormat == "m") {
// No conversion needed
} else if (lengthFormat == "ft") {
offset /= 3.28084; // Convert ft to m
}
} else if (instance == "SOG" || instance == "STW") {
if (speedFormat == "m/s") {
// No conversion needed
} else if (speedFormat == "km/h") {
offset /= 3.6; // Convert km/h to m/s
} else if (speedFormat == "kn") {
offset /= 1.94384; // Convert kn to m/s
}
} else if (instance == "WTemp") {
if (tempFormat == "K" || tempFormat == "C") {
// No conversion needed
} else if (tempFormat == "F") {
offset *= 9.0 / 5.0; // Convert °F to K
slope *= 9.0 / 5.0; // Convert °F to K
}
}
// transform smoothing factor from [0.01..10] to [0.3..0.95] and invert for exponential smoothing formula
if (smooth <= 0) {
smooth = 0;
} else {
if (smooth > 10) {
smooth = 10;
}
smooth = 0.3 + ((smooth - 0.01) * (0.95 - 0.3) / (10 - 0.01));
}
smooth = 1 - smooth;
calibrationMap[instance].offset = offset;
calibrationMap[instance].slope = slope;
calibrationMap[instance].smooth = smooth;
calibrationMap[instance].isCalibrated = false;
LOG_DEBUG(GwLog::LOG, "Calibration data type added: %s, offset: %f, slope: %f, smoothing: %f", instance.c_str(),
calibrationMap[instance].offset, calibrationMap[instance].slope, calibrationMap[instance].smooth);
}
// LOG_DEBUG(GwLog::LOG, "All calibration data read");
}
// Handle calibrationMap and calibrate all boat data values
void CalibrationData::handleCalibration(BoatValueList* boatValueList)
{
GwApi::BoatValue* bValue;
for (const auto& cMap : calibrationMap) {
std::string instance = cMap.first.c_str();
bValue = boatValueList->findValueOrCreate(String(instance.c_str()));
calibrateInstance(bValue);
smoothInstance(bValue);
}
}
// Calibrate single boat data value
// Return calibrated boat value or DBL_MAX, if no calibration was performed
bool CalibrationData::calibrateInstance(GwApi::BoatValue* boatDataValue)
{
std::string instance = boatDataValue->getName().c_str();
double offset = 0;
double slope = 1.0;
double dataValue = 0;
std::string format = "";
// we test this earlier, but for safety reason ...
if (calibrationMap.find(instance) == calibrationMap.end()) {
LOG_DEBUG(GwLog::DEBUG, "BoatDataCalibration: %s not in calibration list", instance.c_str());
return false;
}
calibrationMap[instance].isCalibrated = false; // reset calibration flag until properly calibrated
if (!boatDataValue->valid) { // no valid boat data value, so we don't want to apply calibration data
return false;
}
offset = calibrationMap[instance].offset;
slope = calibrationMap[instance].slope;
dataValue = boatDataValue->value;
format = boatDataValue->getFormat().c_str();
LOG_DEBUG(GwLog::DEBUG, "BoatDataCalibration: %s: value: %f, format: %s", instance.c_str(), dataValue, format.c_str());
if (format == "formatWind") { // instance is of type angle
dataValue = (dataValue * slope) + offset;
// dataValue = WindUtils::toPI(dataValue);
dataValue = WindUtils::to2PI(dataValue); // we should call <toPI> for format of [-180..180], but pages cannot handle negative values yet
} else if (format == "formatCourse") { // instance is of type direction
dataValue = (dataValue * slope) + offset;
dataValue = WindUtils::to2PI(dataValue);
} else if (format == "kelvinToC") { // instance is of type temperature
dataValue = ((dataValue - 273.15) * slope) + offset + 273.15;
} else {
dataValue = (dataValue * slope) + offset;
}
boatDataValue->value = dataValue; // update boat data value with calibrated value
calibrationMap[instance].value = dataValue; // store the calibrated value in the list
calibrationMap[instance].isCalibrated = true;
LOG_DEBUG(GwLog::DEBUG, "BoatDataCalibration: %s: Offset: %f, Slope: %f, Result: %f", instance.c_str(), offset, slope, calibrationMap[instance].value);
return true;
}
// Smooth single boat data value
// Return smoothed boat value or DBL_MAX, if no smoothing was performed
bool CalibrationData::smoothInstance(GwApi::BoatValue* boatDataValue)
{
std::string instance = boatDataValue->getName().c_str();
double oldValue = 0;
double dataValue = boatDataValue->value;
double smoothFactor = 0;
// we test this earlier, but for safety reason ...
if (calibrationMap.find(instance) == calibrationMap.end()) {
LOG_DEBUG(GwLog::DEBUG, "BoatDataCalibration: %s not in calibration list", instance.c_str());
return false;
}
calibrationMap[instance].isCalibrated = false; // reset calibration flag until properly calibrated
if (!boatDataValue->valid) { // no valid boat data value, so we don't need to do anything
return false;
}
smoothFactor = calibrationMap[instance].smooth;
if (lastValue.find(instance) != lastValue.end()) {
oldValue = lastValue[instance];
dataValue = oldValue + (smoothFactor * (dataValue - oldValue)); // exponential smoothing algorithm
}
lastValue[instance] = dataValue; // store the new value for next cycle; first time, store only the current value and return
boatDataValue->value = dataValue; // update boat data value with smoothed value
calibrationMap[instance].value = dataValue; // store the smoothed value in the list
calibrationMap[instance].isCalibrated = true;
LOG_DEBUG(GwLog::DEBUG, "BoatDataCalibration: %s: smooth: %f, oldValue: %f, result: %f", instance.c_str(), smoothFactor, oldValue, calibrationMap[instance].value);
return true;
}
// --- End Class CalibrationData ---------------
// --- Class HstryBuf ---------------
HstryBuf::HstryBuf(const String& name, int size, BoatValueList* boatValues, GwLog* log)
@@ -43,12 +259,15 @@ void HstryBuf::handle(bool useSimuData, CommonData& common)
if (boatValue->valid) {
// Calibrate boat value before adding it to history buffer
calibrationData.calibrateInstance(tmpBVal.get(), logger);
add(tmpBVal->value);
//calibrationData.calibrateInstance(tmpBVal.get(), logger);
//add(tmpBVal->value);
add(boatValue->value);
} else if (useSimuData) { // add simulated value to history buffer
double simValue = formatValue(tmpBVal.get(), common).value; // simulated value is generated at <formatValue>
add(simValue);
double simSIValue = formatValue(tmpBVal.get(), common).value; // simulated value is generated at <formatValue>; here: retreive SI value
add(simSIValue);
} else {
// here we will add invalid (DBL_MAX) value; this will mark periods of missing data in buffer together with a timestamp
}
}
// --- End Class HstryBuf ---------------