esp32-nmea2000-obp60/lib/obp60task/OBPDataOperations.cpp

159 lines
4.3 KiB
C++

#include "OBPDataOperations.h"
double WindUtils::to2PI(double a)
{
a = fmod(a, 2 * M_PI);
if (a < 0.0) {
a += 2 * M_PI;
}
return a;
}
double WindUtils::toPI(double a)
{
a += M_PI;
a = to2PI(a);
a -= M_PI;
return a;
}
double WindUtils::to360(double a)
{
a = fmod(a, 360);
if (a < 0.0) {
a += 360;
}
return a;
}
double WindUtils::to180(double a)
{
a += 180;
a = to360(a);
a -= 180;
return a;
}
void WindUtils::toCart(const double* phi, const double* r, double* x, double* y)
{
*x = *r * sin(*phi);
*y = *r * cos(*phi);
}
void WindUtils::toPol(const double* x, const double* y, double* phi, double* r)
{
*phi = (M_PI / 2) - atan2(*y, *x);
*phi = to2PI(*phi);
*r = sqrt(*x * *x + *y * *y);
}
void WindUtils::addPolar(const double* phi1, const double* r1,
const double* phi2, const double* r2,
double* phi, double* r)
{
double x1, y1, x2, y2;
toCart(phi1, r1, &x1, &y1);
toCart(phi2, r2, &x2, &y2);
x1 += x2;
y1 += y2;
toPol(&x1, &y1, phi, r);
}
void WindUtils::calcTwdSA(const double* AWA, const double* AWS,
const double* CTW, const double* STW, const double* HDT,
double* TWD, double* TWS, double* TWA)
{
double awd = *AWA + *HDT;
awd = to2PI(awd);
double stw = -*STW;
// Serial.println("\ncalcTwdSA: AWA: " + String(*AWA) + ", AWS: " + String(*AWS) + ", CTW: " + String(*CTW) + ", STW: " + String(*STW) + ", HDT: " + String(*HDT));
addPolar(&awd, AWS, CTW, &stw, TWD, TWS);
// Normalize TWD and TWA to 0-360°
*TWD = to2PI(*TWD);
*TWA = toPI(*TWD - *HDT);
// Serial.println("calcTwdSA: TWD: " + String(*TWD) + ", TWS: " + String(*TWS));
}
bool WindUtils::calcTrueWind(const double* awaVal, const double* awsVal,
const double* cogVal, const double* stwVal, const double* sogVal, const double* hdtVal,
const double* hdmVal, const double* varVal, double* twdVal, double* twsVal, double* twaVal)
{
double stw, hdt, ctw;
double twd, tws, twa;
static const double DBL_MIN = std::numeric_limits<double>::lowest();
if (*hdtVal != DBL_MIN) {
hdt = *hdtVal; // Use HDT if available
} else {
if (*hdmVal != DBL_MIN && *varVal != DBL_MIN) {
hdt = *hdmVal + *varVal; // Use corrected HDM if HDT is not available
hdt = to2PI(hdt);
} else if (*cogVal != DBL_MIN) {
hdt = *cogVal; // Use COG as fallback if HDT and HDM are not available
} else {
return false; // Cannot calculate without valid HDT or HDM
}
}
if (*cogVal != DBL_MIN) {
ctw = *cogVal; // Use COG as CTW if available
// ctw = *cogVal + ((*cogVal - hdt) / 2); // Estimate CTW from COG
} else {
ctw = hdt; // 2nd approximation for CTW;
return false;
}
if (*stwVal != DBL_MIN) {
stw = *stwVal; // Use STW if available
} else if (*sogVal != DBL_MIN) {
stw = *sogVal;
} else {
// If STW and SOG are not available, we cannot calculate true wind
return false;
}
if ((*awaVal == DBL_MIN) || (*awsVal == DBL_MIN) || (*cogVal == DBL_MIN) || (*stwVal == DBL_MIN)) {
// Cannot calculate true wind without valid AWA, AWS, COG, or STW
return false;
} else {
calcTwdSA(awaVal, awsVal, &ctw, stwVal, &hdt, &twd, &tws, &twa);
*twdVal = twd;
*twsVal = tws;
*twaVal = twa;
return true;
}
}
void HstryBuf::fillWndBufSimData(tBoatHstryData& hstryBufs)
// Fill most part of TWD and TWS history buffer with simulated data
{
double value = 20.0;
int16_t value2 = 0;
for (int i = 0; i < 900; i++) {
value += random(-20, 20);
value = WindUtils::to360(value);
value2 = static_cast<int16_t>(value * DEG_TO_RAD * 1000);
hstryBufs.twdHstry->add(value2);
}
}
/* double genTwdSimDat()
{
simTwd += random(-20, 20);
if (simTwd < 0.0)
simTwd += 360.0;
if (simTwd >= 360.0)
simTwd -= 360.0;
int16_t z = static_cast<int16_t>(DegToRad(simTwd) * 1000.0);
pageData.boatHstry.twdHstry->add(z); // Fill the buffer with some test data
simTws += random(-200, 150) / 10.0; // TWS value in knots
simTws = constrain(simTws, 0.0f, 50.0f); // Ensure TWS is between 0 and 50 knots
twsValue = simTws;
}*/