First commit for 0.2.3, some old functions still need to be ported to the new back-end api, i.e. import and export.
git-svn-id: https://svn.code.sf.net/p/keepassx/code/trunk@104 b624d157-de02-0410-bad0-e51aec6abb33
This commit is contained in:
197
src/crypto/aes.h
Normal file
197
src/crypto/aes.h
Normal file
@@ -0,0 +1,197 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 31/01/2006
|
||||
|
||||
This file contains the definitions required to use AES in C. See aesopt.h
|
||||
for optimisation details.
|
||||
*/
|
||||
|
||||
#ifndef _AES_H
|
||||
#define _AES_H
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* This include is used to find 8 & 32 bit unsigned integer types */
|
||||
#include "aes_tdefs.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define AES_128 /* define if AES with 128 bit keys is needed */
|
||||
#define AES_192 /* define if AES with 192 bit keys is needed */
|
||||
#define AES_256 /* define if AES with 256 bit keys is needed */
|
||||
#define AES_VAR /* define if a variable key size is needed */
|
||||
#define AES_MODES /* define if support is needed for modes */
|
||||
|
||||
/* The following must also be set in assembler files if being used */
|
||||
|
||||
#define AES_ENCRYPT /* if support for encryption is needed */
|
||||
#define AES_DECRYPT /* if support for decryption is needed */
|
||||
#define AES_ERR_CHK /* for parameter checks & error return codes */
|
||||
#define AES_REV_DKS /* define to reverse decryption key schedule */
|
||||
|
||||
#define AES_BLOCK_SIZE 16 /* the AES block size in bytes */
|
||||
#define N_COLS 4 /* the number of columns in the state */
|
||||
|
||||
/* The key schedule length is 11, 13 or 15 16-byte blocks for 128, */
|
||||
/* 192 or 256-bit keys respectively. That is 176, 208 or 240 bytes */
|
||||
/* or 44, 52 or 60 32-bit words. */
|
||||
|
||||
#if defined( AES_VAR ) || defined( AES_256 )
|
||||
#define KS_LENGTH 60
|
||||
#elif defined( AES_192 )
|
||||
#define KS_LENGTH 52
|
||||
#else
|
||||
#define KS_LENGTH 44
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
#define aes_rval int_ret
|
||||
#else
|
||||
#define aes_rval void_ret
|
||||
#endif
|
||||
|
||||
/* the character array 'inf' in the following structures is used */
|
||||
/* to hold AES context information. This AES code uses cx->inf.b[0] */
|
||||
/* to hold the number of rounds multiplied by 16. The other three */
|
||||
/* elements can be used by code that implements additional modes */
|
||||
|
||||
typedef union
|
||||
{ uint_32t l;
|
||||
uint_8t b[4];
|
||||
} aes_inf;
|
||||
|
||||
typedef struct
|
||||
{ uint_32t ks[KS_LENGTH];
|
||||
aes_inf inf;
|
||||
} aes_encrypt_ctx;
|
||||
|
||||
typedef struct
|
||||
{ uint_32t ks[KS_LENGTH];
|
||||
aes_inf inf;
|
||||
} aes_decrypt_ctx;
|
||||
|
||||
/* This routine must be called before first use if non-static */
|
||||
/* tables are being used */
|
||||
|
||||
aes_rval gen_tabs(void);
|
||||
|
||||
/* Key lengths in the range 16 <= key_len <= 32 are given in bytes, */
|
||||
/* those in the range 128 <= key_len <= 256 are given in bits */
|
||||
|
||||
#if defined( AES_ENCRYPT )
|
||||
|
||||
#if defined(AES_128) || defined(AES_VAR)
|
||||
aes_rval aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined(AES_VAR)
|
||||
aes_rval aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined(AES_VAR)
|
||||
aes_rval aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_VAR)
|
||||
aes_rval aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
aes_rval aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_DECRYPT )
|
||||
|
||||
#if defined(AES_128) || defined(AES_VAR)
|
||||
aes_rval aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined(AES_VAR)
|
||||
aes_rval aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined(AES_VAR)
|
||||
aes_rval aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_VAR)
|
||||
aes_rval aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
aes_rval aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_MODES)
|
||||
|
||||
aes_rval aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
aes_rval aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
aes_rval aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
aes_rval aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
aes_rval aes_mode_reset(aes_encrypt_ctx cx[1]);
|
||||
|
||||
aes_rval aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
aes_rval aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
#define aes_ofb_encrypt aes_ofb_crypt
|
||||
#define aes_ofb_decrypt aes_ofb_crypt
|
||||
|
||||
aes_rval aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
typedef void cbuf_inc(unsigned char *cbuf);
|
||||
|
||||
#define aes_ctr_encrypt aes_ctr_crypt
|
||||
#define aes_ctr_decrypt aes_ctr_crypt
|
||||
|
||||
aes_rval aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
130
src/crypto/aes_edefs.h
Normal file
130
src/crypto/aes_edefs.h
Normal file
@@ -0,0 +1,130 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 31/01/2006
|
||||
*/
|
||||
|
||||
#ifndef EDEFS_H
|
||||
#define EDEFS_H
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
|
||||
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
|
||||
|
||||
#if defined(__GNUC__) || defined(__GNU_LIBRARY__)
|
||||
# if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__)
|
||||
# include <sys/endian.h>
|
||||
# elif defined( BSD ) && ( BSD >= 199103 ) || defined( __DJGPP__ ) || defined( __CYGWIN32__ )
|
||||
# include <machine/endian.h>
|
||||
# elif defined(__APPLE__)
|
||||
# if defined(__BIG_ENDIAN__) && !defined( BIG_ENDIAN )
|
||||
# define BIG_ENDIAN
|
||||
# elif defined(__LITTLE_ENDIAN__) && !defined( LITTLE_ENDIAN )
|
||||
# define LITTLE_ENDIAN
|
||||
# endif
|
||||
# elif !defined( __MINGW32__ )
|
||||
# include <endian.h>
|
||||
# if !defined(__BEOS__)
|
||||
# include <byteswap.h>
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined(PLATFORM_BYTE_ORDER)
|
||||
# if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
|
||||
# if defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# endif
|
||||
# elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
|
||||
# if defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# endif
|
||||
# elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
|
||||
# if defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# elif !defined(__LITTLE_ENDIAN__) && defined(__BIG_ENDIAN__)
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* if the platform is still unknown, try to find its byte order */
|
||||
/* from commonly used machine defines */
|
||||
|
||||
#if !defined(PLATFORM_BYTE_ORDER)
|
||||
|
||||
#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
|
||||
defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
|
||||
defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
|
||||
defined( vax ) || defined( vms ) || defined( VMS ) || \
|
||||
defined( __VMS ) || defined( _M_X64 )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
|
||||
#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
|
||||
defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
|
||||
defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
|
||||
defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
|
||||
defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
|
||||
defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ ) || \
|
||||
defined( __VOS__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
# error Please edit edefs.h (lines 117 or 119) to set the platform byte order
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
891
src/crypto/aes_modes.c
Normal file
891
src/crypto/aes_modes.c
Normal file
@@ -0,0 +1,891 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 31/01/2006
|
||||
|
||||
These subroutines implement multiple block AES modes for ECB, CBC, CFB,
|
||||
OFB and CTR encryption, The code provides support for the VIA Advanced
|
||||
Cryptography Engine (ACE).
|
||||
|
||||
NOTE: In the following subroutines, the AES contexts (ctx) must be
|
||||
16 byte aligned if VIA ACE is being used
|
||||
*/
|
||||
|
||||
#include <memory.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "aesopt.h"
|
||||
|
||||
#if defined( AES_MODES )
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
#pragma intrinsic(memcpy)
|
||||
#define in_line __inline
|
||||
#else
|
||||
#define in_line
|
||||
#endif
|
||||
|
||||
#define BFR_BLOCKS 8
|
||||
|
||||
/* These values are used to detect long word alignment in order to */
|
||||
/* speed up some buffer operations. This facility may not work on */
|
||||
/* some machines so this define can be commented out if necessary */
|
||||
|
||||
#define FAST_BUFFER_OPERATIONS
|
||||
#pragma warning( disable : 4311 4312 )
|
||||
|
||||
#define lp08(x) ((uint_8t*)(x))
|
||||
#define lp32(x) ((uint_32t*)(x))
|
||||
#define addr_mod_04(x) ((unsigned long)(x) & 3)
|
||||
#define addr_mod_16(x) ((unsigned long)(x) & 15)
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
#include "via_ace.h"
|
||||
|
||||
#pragma pack(16)
|
||||
|
||||
aligned_array(unsigned long, enc_gen_table, 12, 16) = NEH_ENC_GEN_DATA;
|
||||
aligned_array(unsigned long, enc_load_table, 12, 16) = NEH_ENC_LOAD_DATA;
|
||||
aligned_array(unsigned long, enc_hybrid_table, 12, 16) = NEH_ENC_HYBRID_DATA;
|
||||
aligned_array(unsigned long, dec_gen_table, 12, 16) = NEH_DEC_GEN_DATA;
|
||||
aligned_array(unsigned long, dec_load_table, 12, 16) = NEH_DEC_LOAD_DATA;
|
||||
aligned_array(unsigned long, dec_hybrid_table, 12, 16) = NEH_DEC_HYBRID_DATA;
|
||||
|
||||
/* NOTE: These control word macros must only be used after */
|
||||
/* a key has been set up because they depend on key size */
|
||||
|
||||
#if NEH_KEY_TYPE == NEH_LOAD
|
||||
#define kd_adr(c) ((uint_8t*)(c)->ks)
|
||||
#elif NEH_KEY_TYPE == NEH_GENERATE
|
||||
#define kd_adr(c) ((uint_8t*)(c)->ks + (c)->inf.b[0])
|
||||
#else
|
||||
#define kd_adr(c) ((uint_8t*)(c)->ks + ((c)->inf.b[0] == 160 ? 160 : 0))
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
#define aligned_array(type, name, no, stride) type name[no]
|
||||
#define aligned_auto(type, name, no, stride) type name[no]
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && _MSC_VER > 1200
|
||||
|
||||
#define via_cwd(cwd, ty, dir, len) unsigned long* cwd = (dir##_##ty##_table + ((len - 128) >> 4))
|
||||
|
||||
#else
|
||||
|
||||
#define via_cwd(cwd, ty, dir, len) \
|
||||
aligned_auto(unsigned long, cwd, 4, 16); \
|
||||
cwd[1] = cwd[2] = cwd[3] = 0; \
|
||||
cwd[0] = neh_##dir##_##ty##_key(len)
|
||||
|
||||
#endif
|
||||
|
||||
aes_rval aes_mode_reset(aes_encrypt_ctx ctx[1])
|
||||
{
|
||||
ctx->inf.b[2] = 0;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
aes_rval aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_encrypt_ctx ctx[1])
|
||||
{ int nb = len >> 4;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint_8t *ksp = (uint_8t*)(ctx->ks);
|
||||
via_cwd(cwd, hybrid, enc, 2* ctx->inf.b[0] - 192);
|
||||
|
||||
if(addr_mod_16(ctx))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf))
|
||||
{
|
||||
via_ecb_op5(ksp,cwd,ibuf,obuf,nb);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
|
||||
op = (addr_mod_16(obuf) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_ecb_op5(ksp,cwd,ip,op,m);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
while(nb--)
|
||||
{
|
||||
aes_encrypt(ibuf, obuf, ctx);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
aes_rval aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_decrypt_ctx ctx[1])
|
||||
{ int nb = len >> 4;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint_8t *ksp = kd_adr(ctx);
|
||||
via_cwd(cwd, hybrid, dec, 2* ctx->inf.b[0] - 192);
|
||||
|
||||
if(addr_mod_16(ctx))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf))
|
||||
{
|
||||
via_ecb_op5(ksp,cwd,ibuf,obuf,nb);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
|
||||
op = (addr_mod_16(obuf) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_ecb_op5(ksp,cwd,ip,op,m);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
while(nb--)
|
||||
{
|
||||
aes_decrypt(ibuf, obuf, ctx);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
aes_rval aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_encrypt_ctx ctx[1])
|
||||
{ int nb = len >> 4;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, enc, 2* ctx->inf.b[0] - 192);
|
||||
|
||||
if(addr_mod_16(ctx))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(addr_mod_16(iv)) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf) && !addr_mod_16(iv))
|
||||
{
|
||||
via_cbc_op7(ksp,cwd,ibuf,obuf,nb,ivp,ivp);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
|
||||
op = (addr_mod_16(obuf) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cbc_op7(ksp,cwd,ip,op,m,ivp,ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
if(iv != ivp)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!addr_mod_04(ibuf) && !addr_mod_04(iv))
|
||||
while(nb--)
|
||||
{
|
||||
lp32(iv)[0] ^= lp32(ibuf)[0];
|
||||
lp32(iv)[1] ^= lp32(ibuf)[1];
|
||||
lp32(iv)[2] ^= lp32(ibuf)[2];
|
||||
lp32(iv)[3] ^= lp32(ibuf)[3];
|
||||
aes_encrypt(iv, iv, ctx);
|
||||
memcpy(obuf, iv, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(nb--)
|
||||
{
|
||||
iv[ 0] ^= ibuf[ 0]; iv[ 1] ^= ibuf[ 1];
|
||||
iv[ 2] ^= ibuf[ 2]; iv[ 3] ^= ibuf[ 3];
|
||||
iv[ 4] ^= ibuf[ 4]; iv[ 5] ^= ibuf[ 5];
|
||||
iv[ 6] ^= ibuf[ 6]; iv[ 7] ^= ibuf[ 7];
|
||||
iv[ 8] ^= ibuf[ 8]; iv[ 9] ^= ibuf[ 9];
|
||||
iv[10] ^= ibuf[10]; iv[11] ^= ibuf[11];
|
||||
iv[12] ^= ibuf[12]; iv[13] ^= ibuf[13];
|
||||
iv[14] ^= ibuf[14]; iv[15] ^= ibuf[15];
|
||||
aes_encrypt(iv, iv, ctx);
|
||||
memcpy(obuf, iv, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
aes_rval aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_decrypt_ctx ctx[1])
|
||||
{ unsigned char tmp[AES_BLOCK_SIZE];
|
||||
int nb = len >> 4;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint_8t *ksp = kd_adr(ctx), *ivp = iv;
|
||||
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, dec, 2* ctx->inf.b[0] - 192);
|
||||
|
||||
if(addr_mod_16(ctx))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(addr_mod_16(iv)) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf) && !addr_mod_16(iv))
|
||||
{
|
||||
via_cbc_op6(ksp,cwd,ibuf,obuf,nb,ivp);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
|
||||
op = (addr_mod_16(obuf) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cbc_op6(ksp,cwd,ip,op,m,ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
if(iv != ivp)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!addr_mod_04(obuf) && !addr_mod_04(iv))
|
||||
while(nb--)
|
||||
{
|
||||
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
|
||||
aes_decrypt(ibuf, obuf, ctx);
|
||||
lp32(obuf)[0] ^= lp32(iv)[0];
|
||||
lp32(obuf)[1] ^= lp32(iv)[1];
|
||||
lp32(obuf)[2] ^= lp32(iv)[2];
|
||||
lp32(obuf)[3] ^= lp32(iv)[3];
|
||||
memcpy(iv, tmp, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(nb--)
|
||||
{
|
||||
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
|
||||
aes_decrypt(ibuf, obuf, ctx);
|
||||
obuf[ 0] ^= iv[ 0]; obuf[ 1] ^= iv[ 1];
|
||||
obuf[ 2] ^= iv[ 2]; obuf[ 3] ^= iv[ 3];
|
||||
obuf[ 4] ^= iv[ 4]; obuf[ 5] ^= iv[ 5];
|
||||
obuf[ 6] ^= iv[ 6]; obuf[ 7] ^= iv[ 7];
|
||||
obuf[ 8] ^= iv[ 8]; obuf[ 9] ^= iv[ 9];
|
||||
obuf[10] ^= iv[10]; obuf[11] ^= iv[11];
|
||||
obuf[12] ^= iv[12]; obuf[13] ^= iv[13];
|
||||
obuf[14] ^= iv[14]; obuf[15] ^= iv[15];
|
||||
memcpy(iv, tmp, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
aes_rval aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
||||
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
||||
|
||||
if(b_pos) /* complete any partial block */
|
||||
{
|
||||
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
||||
*obuf++ = iv[b_pos++] ^= *ibuf++, cnt++;
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
|
||||
{
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ int m;
|
||||
uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, enc, 2* ctx->inf.b[0] - 192);
|
||||
|
||||
if(addr_mod_16(ctx))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(addr_mod_16(iv)) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf))
|
||||
{
|
||||
via_cfb_op7(ksp, cwd, ibuf, obuf, nb, ivp, ivp);
|
||||
ibuf += nb * AES_BLOCK_SIZE;
|
||||
obuf += nb * AES_BLOCK_SIZE;
|
||||
cnt += nb * AES_BLOCK_SIZE;
|
||||
}
|
||||
else /* input, output or both are unaligned */
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
||||
|
||||
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
|
||||
op = (addr_mod_16(obuf) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cfb_op7(ksp, cwd, ip, op, m, ivp, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
cnt += m * AES_BLOCK_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
if(ivp != iv)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
}
|
||||
#else
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!addr_mod_04(ibuf) && !addr_mod_04(obuf) && !addr_mod_04(iv))
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
aes_encrypt(iv, iv, ctx);
|
||||
lp32(obuf)[0] = lp32(iv)[0] ^= lp32(ibuf)[0];
|
||||
lp32(obuf)[1] = lp32(iv)[1] ^= lp32(ibuf)[1];
|
||||
lp32(obuf)[2] = lp32(iv)[2] ^= lp32(ibuf)[2];
|
||||
lp32(obuf)[3] = lp32(iv)[3] ^= lp32(ibuf)[3];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
aes_encrypt(iv, iv, ctx);
|
||||
obuf[ 0] = iv[ 0] ^= ibuf[ 0]; obuf[ 1] = iv[ 1] ^= ibuf[ 1];
|
||||
obuf[ 2] = iv[ 2] ^= ibuf[ 2]; obuf[ 3] = iv[ 3] ^= ibuf[ 3];
|
||||
obuf[ 4] = iv[ 4] ^= ibuf[ 4]; obuf[ 5] = iv[ 5] ^= ibuf[ 5];
|
||||
obuf[ 6] = iv[ 6] ^= ibuf[ 6]; obuf[ 7] = iv[ 7] ^= ibuf[ 7];
|
||||
obuf[ 8] = iv[ 8] ^= ibuf[ 8]; obuf[ 9] = iv[ 9] ^= ibuf[ 9];
|
||||
obuf[10] = iv[10] ^= ibuf[10]; obuf[11] = iv[11] ^= ibuf[11];
|
||||
obuf[12] = iv[12] ^= ibuf[12]; obuf[13] = iv[13] ^= ibuf[13];
|
||||
obuf[14] = iv[14] ^= ibuf[14]; obuf[15] = iv[15] ^= ibuf[15];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
while(cnt < len)
|
||||
{
|
||||
if(!b_pos)
|
||||
aes_ecb_encrypt(iv, iv, AES_BLOCK_SIZE, ctx);
|
||||
|
||||
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
||||
*obuf++ = iv[b_pos++] ^= *ibuf++, cnt++;
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
aes_rval aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
||||
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
||||
|
||||
if(b_pos) /* complete any partial block */
|
||||
{ uint_8t t;
|
||||
|
||||
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
||||
t = *ibuf++, *obuf++ = t ^ iv[b_pos], iv[b_pos++] = t, cnt++;
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
|
||||
{
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ int m;
|
||||
uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, dec, 2* ctx->inf.b[0] - 192);
|
||||
|
||||
if(addr_mod_16(ctx))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(addr_mod_16(iv)) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf))
|
||||
{
|
||||
via_cfb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
||||
ibuf += nb * AES_BLOCK_SIZE;
|
||||
obuf += nb * AES_BLOCK_SIZE;
|
||||
cnt += nb * AES_BLOCK_SIZE;
|
||||
}
|
||||
else /* input, output or both are unaligned */
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
||||
|
||||
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
|
||||
op = (addr_mod_16(obuf) ? buf : op);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cfb_op6(ksp, cwd, ip, op, m, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
cnt += m * AES_BLOCK_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
if(ivp != iv)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
}
|
||||
#else
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!addr_mod_04(ibuf) && !addr_mod_04(obuf) &&!addr_mod_04(iv))
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{ uint_32t t;
|
||||
|
||||
assert(b_pos == 0);
|
||||
aes_encrypt(iv, iv, ctx);
|
||||
t = lp32(ibuf)[0], lp32(obuf)[0] = t ^ lp32(iv)[0], lp32(iv)[0] = t;
|
||||
t = lp32(ibuf)[1], lp32(obuf)[1] = t ^ lp32(iv)[1], lp32(iv)[1] = t;
|
||||
t = lp32(ibuf)[2], lp32(obuf)[2] = t ^ lp32(iv)[2], lp32(iv)[2] = t;
|
||||
t = lp32(ibuf)[3], lp32(obuf)[3] = t ^ lp32(iv)[3], lp32(iv)[3] = t;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{ uint_8t t;
|
||||
|
||||
assert(b_pos == 0);
|
||||
aes_encrypt(iv, iv, ctx);
|
||||
t = ibuf[ 0], obuf[ 0] = t ^ iv[ 0], iv[ 0] = t;
|
||||
t = ibuf[ 1], obuf[ 1] = t ^ iv[ 1], iv[ 1] = t;
|
||||
t = ibuf[ 2], obuf[ 2] = t ^ iv[ 2], iv[ 2] = t;
|
||||
t = ibuf[ 3], obuf[ 3] = t ^ iv[ 3], iv[ 3] = t;
|
||||
t = ibuf[ 4], obuf[ 4] = t ^ iv[ 4], iv[ 4] = t;
|
||||
t = ibuf[ 5], obuf[ 5] = t ^ iv[ 5], iv[ 5] = t;
|
||||
t = ibuf[ 6], obuf[ 6] = t ^ iv[ 6], iv[ 6] = t;
|
||||
t = ibuf[ 7], obuf[ 7] = t ^ iv[ 7], iv[ 7] = t;
|
||||
t = ibuf[ 8], obuf[ 8] = t ^ iv[ 8], iv[ 8] = t;
|
||||
t = ibuf[ 9], obuf[ 9] = t ^ iv[ 9], iv[ 9] = t;
|
||||
t = ibuf[10], obuf[10] = t ^ iv[10], iv[10] = t;
|
||||
t = ibuf[11], obuf[11] = t ^ iv[11], iv[11] = t;
|
||||
t = ibuf[12], obuf[12] = t ^ iv[12], iv[12] = t;
|
||||
t = ibuf[13], obuf[13] = t ^ iv[13], iv[13] = t;
|
||||
t = ibuf[14], obuf[14] = t ^ iv[14], iv[14] = t;
|
||||
t = ibuf[15], obuf[15] = t ^ iv[15], iv[15] = t;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
while(cnt < len)
|
||||
{ uint_8t t;
|
||||
|
||||
if(!b_pos)
|
||||
aes_ecb_encrypt(iv, iv, AES_BLOCK_SIZE, ctx);
|
||||
|
||||
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
||||
t = *ibuf++, *obuf++ = t ^ iv[b_pos], iv[b_pos++] = t, cnt++;
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
aes_rval aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
||||
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
||||
|
||||
if(b_pos) /* complete any partial block */
|
||||
{
|
||||
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
||||
*obuf++ = iv[b_pos++] ^ *ibuf++, cnt++;
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
|
||||
{
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ int m;
|
||||
uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, enc, 2* ctx->inf.b[0] - 192);
|
||||
|
||||
if(addr_mod_16(ctx))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(addr_mod_16(iv)) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf))
|
||||
{
|
||||
via_ofb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
||||
ibuf += nb * AES_BLOCK_SIZE;
|
||||
obuf += nb * AES_BLOCK_SIZE;
|
||||
cnt += nb * AES_BLOCK_SIZE;
|
||||
}
|
||||
else /* input, output or both are unaligned */
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
||||
|
||||
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
|
||||
op = (addr_mod_16(obuf) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_ofb_op6(ksp, cwd, ip, op, m, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
cnt += m * AES_BLOCK_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
if(ivp != iv)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
}
|
||||
#else
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!addr_mod_04(ibuf) && !addr_mod_04(obuf) && !addr_mod_04(iv))
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
aes_encrypt(iv, iv, ctx);
|
||||
lp32(obuf)[0] = lp32(iv)[0] ^ lp32(ibuf)[0];
|
||||
lp32(obuf)[1] = lp32(iv)[1] ^ lp32(ibuf)[1];
|
||||
lp32(obuf)[2] = lp32(iv)[2] ^ lp32(ibuf)[2];
|
||||
lp32(obuf)[3] = lp32(iv)[3] ^ lp32(ibuf)[3];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
aes_encrypt(iv, iv, ctx);
|
||||
obuf[ 0] = iv[ 0] ^ ibuf[ 0]; obuf[ 1] = iv[ 1] ^ ibuf[ 1];
|
||||
obuf[ 2] = iv[ 2] ^ ibuf[ 2]; obuf[ 3] = iv[ 3] ^ ibuf[ 3];
|
||||
obuf[ 4] = iv[ 4] ^ ibuf[ 4]; obuf[ 5] = iv[ 5] ^ ibuf[ 5];
|
||||
obuf[ 6] = iv[ 6] ^ ibuf[ 6]; obuf[ 7] = iv[ 7] ^ ibuf[ 7];
|
||||
obuf[ 8] = iv[ 8] ^ ibuf[ 8]; obuf[ 9] = iv[ 9] ^ ibuf[ 9];
|
||||
obuf[10] = iv[10] ^ ibuf[10]; obuf[11] = iv[11] ^ ibuf[11];
|
||||
obuf[12] = iv[12] ^ ibuf[12]; obuf[13] = iv[13] ^ ibuf[13];
|
||||
obuf[14] = iv[14] ^ ibuf[14]; obuf[15] = iv[15] ^ ibuf[15];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
while(cnt < len)
|
||||
{
|
||||
if(!b_pos)
|
||||
aes_ecb_encrypt(iv, iv, AES_BLOCK_SIZE, ctx);
|
||||
|
||||
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
||||
*obuf++ = iv[b_pos++] ^ *ibuf++, cnt++;
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#define BFR_LENGTH (BFR_BLOCKS * AES_BLOCK_SIZE)
|
||||
|
||||
aes_rval aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx ctx[1])
|
||||
{ uint_8t *ip;
|
||||
int i, blen, b_pos = (int)(ctx->inf.b[2]);
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
aligned_auto(uint_8t, buf, BFR_LENGTH, 16);
|
||||
if(ctx->inf.b[1] == 0xff && addr_mod_16(ctx))
|
||||
return EXIT_FAILURE;
|
||||
#else
|
||||
uint_8t buf[BFR_LENGTH];
|
||||
#endif
|
||||
|
||||
if(b_pos)
|
||||
{
|
||||
memcpy(buf, cbuf, AES_BLOCK_SIZE);
|
||||
aes_ecb_encrypt(buf, buf, AES_BLOCK_SIZE, ctx);
|
||||
while(b_pos < AES_BLOCK_SIZE && len--)
|
||||
*obuf++ = *ibuf++ ^ buf[b_pos++];
|
||||
if(len)
|
||||
ctr_inc(cbuf), b_pos = 0;
|
||||
}
|
||||
|
||||
while(len)
|
||||
{
|
||||
blen = (len > BFR_LENGTH ? BFR_LENGTH : len), len -= blen;
|
||||
|
||||
for(i = 0, ip = buf; i < (blen >> 4); ++i)
|
||||
{
|
||||
memcpy(ip, cbuf, AES_BLOCK_SIZE);
|
||||
ctr_inc(cbuf);
|
||||
ip += AES_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
if(blen & (AES_BLOCK_SIZE - 1))
|
||||
memcpy(ip, cbuf, AES_BLOCK_SIZE), i++;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{
|
||||
via_cwd(cwd, hybrid, enc, 2* ctx->inf.b[0] - 192);
|
||||
via_ecb_op5((ctx->ks),cwd,buf,buf,i);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
aes_ecb_encrypt(buf, buf, i * AES_BLOCK_SIZE, ctx);
|
||||
|
||||
i = 0; ip = buf;
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!addr_mod_04(ibuf) && !addr_mod_04(obuf) && !addr_mod_04(ip))
|
||||
while(i + AES_BLOCK_SIZE <= blen)
|
||||
{
|
||||
lp32(obuf)[0] = lp32(ibuf)[0] ^ lp32(ip)[0];
|
||||
lp32(obuf)[1] = lp32(ibuf)[1] ^ lp32(ip)[1];
|
||||
lp32(obuf)[2] = lp32(ibuf)[2] ^ lp32(ip)[2];
|
||||
lp32(obuf)[3] = lp32(ibuf)[3] ^ lp32(ip)[3];
|
||||
i += AES_BLOCK_SIZE;
|
||||
ip += AES_BLOCK_SIZE;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
while(i + AES_BLOCK_SIZE <= blen)
|
||||
{
|
||||
obuf[ 0] = ibuf[ 0] ^ ip[ 0]; obuf[ 1] = ibuf[ 1] ^ ip[ 1];
|
||||
obuf[ 2] = ibuf[ 2] ^ ip[ 2]; obuf[ 3] = ibuf[ 3] ^ ip[ 3];
|
||||
obuf[ 4] = ibuf[ 4] ^ ip[ 4]; obuf[ 5] = ibuf[ 5] ^ ip[ 5];
|
||||
obuf[ 6] = ibuf[ 6] ^ ip[ 6]; obuf[ 7] = ibuf[ 7] ^ ip[ 7];
|
||||
obuf[ 8] = ibuf[ 8] ^ ip[ 8]; obuf[ 9] = ibuf[ 9] ^ ip[ 9];
|
||||
obuf[10] = ibuf[10] ^ ip[10]; obuf[11] = ibuf[11] ^ ip[11];
|
||||
obuf[12] = ibuf[12] ^ ip[12]; obuf[13] = ibuf[13] ^ ip[13];
|
||||
obuf[14] = ibuf[14] ^ ip[14]; obuf[15] = ibuf[15] ^ ip[15];
|
||||
i += AES_BLOCK_SIZE;
|
||||
ip += AES_BLOCK_SIZE;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
while(i++ < blen)
|
||||
*obuf++ = *ibuf++ ^ ip[b_pos++];
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
131
src/crypto/aes_tdefs.h
Normal file
131
src/crypto/aes_tdefs.h
Normal file
@@ -0,0 +1,131 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 31/01/2006
|
||||
|
||||
The unsigned integer types defined here are of the form uint_<nn>t where
|
||||
<nn> is the length of the type; for example, the unsigned 32-bit type is
|
||||
'uint_32t'. These are NOT the same as the 'C99 integer types' that are
|
||||
defined in the inttypes.h and stdint.h headers since attempts to use these
|
||||
types have shown that support for them is still highly variable. However,
|
||||
since the latter are of the form uint<nn>_t, a regular expression search
|
||||
and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t')
|
||||
can be used to convert the types used here to the C99 standard types.
|
||||
*/
|
||||
|
||||
#ifndef TDEFS_H
|
||||
#define TDEFS_H
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#if UCHAR_MAX == 0xff
|
||||
typedef unsigned char uint_8t;
|
||||
#else
|
||||
# error Please define uint_8t as an 8-bit unsigned integer type in tdefs.h
|
||||
#endif
|
||||
|
||||
#if USHRT_MAX == 0xffff
|
||||
typedef unsigned short uint_16t;
|
||||
#else
|
||||
# error Please define uint_16t as a 16-bit unsigned short type in tdefs.h
|
||||
#endif
|
||||
|
||||
#if UINT_MAX == 0xffffffff
|
||||
typedef unsigned int uint_32t;
|
||||
#elif ULONG_MAX == 0xfffffffful
|
||||
typedef unsigned long uint_32t;
|
||||
#elif defined( _CRAY )
|
||||
# error This code needs 32-bit data types, which Cray machines don't provide
|
||||
#else
|
||||
# error Please define uint_32t as a 32-bit unsigned integer type in tdefs.h
|
||||
#endif
|
||||
|
||||
#if defined( NEED_UINT_64T )
|
||||
# define li_64(h) 0x##h##ull
|
||||
# if defined( _MSC_VER )
|
||||
# if _MSC_VER < 1310
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# undef li_64
|
||||
# define li_64(h) 0x##h##ui64
|
||||
# else
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# elif defined( __BORLANDC__ ) && !defined( __MSDOS__ )
|
||||
typedef __int64 uint_64t;
|
||||
# elif defined( __sun ) && defined(ULONG_MAX) && ULONG_MAX == 0xfffffffful
|
||||
typedef unsigned long long uint_64t;
|
||||
# elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX == 0xffffffffffffffffull
|
||||
typedef unsigned long long uint_64t;
|
||||
# elif defined( ULLONG_MAX ) && ULLONG_MAX == 0xffffffffffffffffull
|
||||
typedef unsigned long long uint_64t;
|
||||
# elif defined( ULONG_MAX ) && ULONG_MAX == 0xfffffffffffffffful
|
||||
typedef unsigned long uint_64t;
|
||||
# elif defined( UINT_MAX ) && UINT_MAX == 0xffffffffffffffff
|
||||
typedef unsigned int uint_64t;
|
||||
# else
|
||||
# error Please define uint_64t as an unsigned 64 bit type in tdefs.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined( DLL_EXPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define void_ret __declspec( dllexport ) void __stdcall
|
||||
# define int_ret __declspec( dllexport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define void_ret __declspec( __dllexport__ ) void
|
||||
# define int_ret __declspec( __dllexport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
#elif defined( DLL_IMPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define void_ret __declspec( dllimport ) void __stdcall
|
||||
# define int_ret __declspec( dllimport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define void_ret __declspec( __dllimport__ ) void
|
||||
# define int_ret __declspec( __dllimport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
#elif defined( __WATCOMC__ )
|
||||
# define void_ret void __cdecl
|
||||
# define int_ret int __cdecl
|
||||
#else
|
||||
# define void_ret void
|
||||
# define int_ret int
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
153
src/crypto/aescpp.h
Normal file
153
src/crypto/aescpp.h
Normal file
@@ -0,0 +1,153 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 31/01/2006
|
||||
|
||||
This file contains the definitions required to use AES (Rijndael) in C++.
|
||||
*/
|
||||
|
||||
#ifndef _AESCPP_H
|
||||
#define _AESCPP_H
|
||||
|
||||
#include "aes.h"
|
||||
|
||||
#if defined( AES_ENCRYPT )
|
||||
|
||||
class AESencrypt
|
||||
{
|
||||
public:
|
||||
aes_encrypt_ctx cx[1];
|
||||
AESencrypt(void) { gen_tabs(); };
|
||||
#ifdef AES_128
|
||||
AESencrypt(const unsigned char key[])
|
||||
{ aes_encrypt_key128(key, cx); }
|
||||
aes_rval key128(const unsigned char key[])
|
||||
{ return aes_encrypt_key128(key, cx); }
|
||||
#endif
|
||||
#ifdef AES_192
|
||||
aes_rval key192(const unsigned char key[])
|
||||
{ return aes_encrypt_key192(key, cx); }
|
||||
#endif
|
||||
#ifdef AES_256
|
||||
aes_rval key256(const unsigned char key[])
|
||||
{ return aes_encrypt_key256(key, cx); }
|
||||
#endif
|
||||
#ifdef AES_VAR
|
||||
aes_rval key(const unsigned char key[], int key_len)
|
||||
{ return aes_encrypt_key(key, key_len, cx); }
|
||||
#endif
|
||||
aes_rval encrypt(const unsigned char in[], unsigned char out[]) const
|
||||
{ return aes_encrypt(in, out, cx); }
|
||||
#ifndef AES_MODES
|
||||
aes_rval ecb_encrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ while(nb--)
|
||||
{ aes_encrypt(in, out, cx), in += AES_BLOCK_SIZE, out += AES_BLOCK_SIZE; }
|
||||
}
|
||||
#endif
|
||||
#ifdef AES_MODES
|
||||
aes_rval mode_reset(void) { return aes_mode_reset(cx); }
|
||||
|
||||
aes_rval ecb_encrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ return aes_ecb_encrypt(in, out, nb, cx); }
|
||||
|
||||
aes_rval cbc_encrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[]) const
|
||||
{ return aes_cbc_encrypt(in, out, nb, iv, cx); }
|
||||
|
||||
aes_rval cfb_encrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[])
|
||||
{ return aes_cfb_encrypt(in, out, nb, iv, cx); }
|
||||
|
||||
aes_rval cfb_decrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[])
|
||||
{ return aes_cfb_decrypt(in, out, nb, iv, cx); }
|
||||
|
||||
aes_rval ofb_crypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[])
|
||||
{ return aes_ofb_crypt(in, out, nb, iv, cx); }
|
||||
|
||||
typedef void ctr_fn(unsigned char ctr[]);
|
||||
|
||||
aes_rval ctr_crypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[], ctr_fn cf)
|
||||
{ return aes_ctr_crypt(in, out, nb, iv, cf, cx); }
|
||||
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_DECRYPT )
|
||||
|
||||
class AESdecrypt
|
||||
{
|
||||
public:
|
||||
aes_decrypt_ctx cx[1];
|
||||
AESdecrypt(void) { gen_tabs(); };
|
||||
#ifdef AES_128
|
||||
AESdecrypt(const unsigned char key[])
|
||||
{ aes_decrypt_key128(key, cx); }
|
||||
aes_rval key128(const unsigned char key[])
|
||||
{ return aes_decrypt_key128(key, cx); }
|
||||
#endif
|
||||
#ifdef AES_192
|
||||
aes_rval key192(const unsigned char key[])
|
||||
{ return aes_decrypt_key192(key, cx); }
|
||||
#endif
|
||||
#ifdef AES_256
|
||||
aes_rval key256(const unsigned char key[])
|
||||
{ return aes_decrypt_key256(key, cx); }
|
||||
#endif
|
||||
#ifdef AES_VAR
|
||||
aes_rval key(const unsigned char key[], int key_len)
|
||||
{ return aes_decrypt_key(key, key_len, cx); }
|
||||
#endif
|
||||
aes_rval decrypt(const unsigned char in[], unsigned char out[]) const
|
||||
{ return aes_decrypt(in, out, cx); }
|
||||
#ifndef AES_MODES
|
||||
aes_rval ecb_decrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ while(nb--)
|
||||
{ aes_decrypt(in, out, cx), in += AES_BLOCK_SIZE, out += AES_BLOCK_SIZE; }
|
||||
}
|
||||
#endif
|
||||
#ifdef AES_MODES
|
||||
|
||||
aes_rval ecb_decrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ return aes_ecb_decrypt(in, out, nb, cx); }
|
||||
|
||||
aes_rval cbc_decrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[]) const
|
||||
{ return aes_cbc_decrypt(in, out, nb, iv, cx); }
|
||||
#endif
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
316
src/crypto/aescrypt.c
Normal file
316
src/crypto/aescrypt.c
Normal file
@@ -0,0 +1,316 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 31/01/2006
|
||||
*/
|
||||
|
||||
#include "aesopt.h"
|
||||
#include "aestab.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
|
||||
#define so(y,x,c) word_out(y, c, s(x,c))
|
||||
|
||||
#if defined(ARRAYS)
|
||||
#define locals(y,x) x[4],y[4]
|
||||
#else
|
||||
#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
|
||||
#endif
|
||||
|
||||
#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
|
||||
s(y,2) = s(x,2); s(y,3) = s(x,3);
|
||||
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
|
||||
#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
|
||||
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
|
||||
|
||||
#if ( FUNCS_IN_C & ENCRYPTION_IN_C)
|
||||
|
||||
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
|
||||
Pentium optimiation with small code but this is poor for decryption
|
||||
so we need to control this with the following VC++ pragmas
|
||||
*/
|
||||
|
||||
#if defined( _MSC_VER ) && !defined( _WIN64 )
|
||||
#pragma optimize( "s", on )
|
||||
#endif
|
||||
|
||||
/* Given the column (c) of the output state variable, the following
|
||||
macros give the input state variables which are needed in its
|
||||
computation for each row (r) of the state. All the alternative
|
||||
macros give the same end values but expand into different ways
|
||||
of calculating these values. In particular the complex macro
|
||||
used for dynamically variable block sizes is designed to expand
|
||||
to a compile time constant whenever possible but will expand to
|
||||
conditional clauses on some branches (I am grateful to Frank
|
||||
Yellin for this construction)
|
||||
*/
|
||||
|
||||
#define fwd_var(x,r,c)\
|
||||
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
|
||||
: r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
|
||||
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
|
||||
: ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
|
||||
|
||||
#if defined(FT4_SET)
|
||||
#undef dec_fmvars
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
|
||||
#elif defined(FT1_SET)
|
||||
#undef dec_fmvars
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
|
||||
#else
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
|
||||
#endif
|
||||
|
||||
#if defined(FL4_SET)
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
|
||||
#elif defined(FL1_SET)
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
|
||||
#else
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
|
||||
#endif
|
||||
|
||||
aes_rval aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
|
||||
{ uint_32t locals(b0, b1);
|
||||
const uint_32t *kp;
|
||||
#if defined( dec_fmvars )
|
||||
dec_fmvars; /* declare variables for fwd_mcol() if needed */
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
|
||||
return EXIT_FAILURE;
|
||||
#endif
|
||||
|
||||
kp = cx->ks;
|
||||
state_in(b0, in, kp);
|
||||
|
||||
#if (ENC_UNROLL == FULL)
|
||||
|
||||
switch(cx->inf.b[0])
|
||||
{
|
||||
case 14 * 16:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
kp += 2 * N_COLS;
|
||||
case 12 * 16:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
kp += 2 * N_COLS;
|
||||
case 10 * 16:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 3 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 4 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 5 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 6 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 7 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 8 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 9 * N_COLS);
|
||||
round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#if (ENC_UNROLL == PARTIAL)
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
|
||||
{
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b0, b1, kp);
|
||||
}
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
#else
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
|
||||
{
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
l_copy(b0, b1);
|
||||
}
|
||||
#endif
|
||||
kp += N_COLS;
|
||||
round(fwd_lrnd, b0, b1, kp);
|
||||
}
|
||||
#endif
|
||||
|
||||
state_out(out, b0);
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & DECRYPTION_IN_C)
|
||||
|
||||
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
|
||||
Pentium optimiation with small code but this is poor for decryption
|
||||
so we need to control this with the following VC++ pragmas
|
||||
*/
|
||||
|
||||
#if defined( _MSC_VER ) && !defined( _WIN64 )
|
||||
#pragma optimize( "t", on )
|
||||
#endif
|
||||
|
||||
/* Given the column (c) of the output state variable, the following
|
||||
macros give the input state variables which are needed in its
|
||||
computation for each row (r) of the state. All the alternative
|
||||
macros give the same end values but expand into different ways
|
||||
of calculating these values. In particular the complex macro
|
||||
used for dynamically variable block sizes is designed to expand
|
||||
to a compile time constant whenever possible but will expand to
|
||||
conditional clauses on some branches (I am grateful to Frank
|
||||
Yellin for this construction)
|
||||
*/
|
||||
|
||||
#define inv_var(x,r,c)\
|
||||
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
|
||||
: r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
|
||||
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
|
||||
: ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
|
||||
|
||||
#if defined(IT4_SET)
|
||||
#undef dec_imvars
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
|
||||
#elif defined(IT1_SET)
|
||||
#undef dec_imvars
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
|
||||
#else
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
|
||||
#endif
|
||||
|
||||
#if defined(IL4_SET)
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
|
||||
#elif defined(IL1_SET)
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
|
||||
#else
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
|
||||
#endif
|
||||
|
||||
/* This code can work with the decryption key schedule in the */
|
||||
/* order that is used for encrytpion (where the 1st decryption */
|
||||
/* round key is at the high end ot the schedule) or with a key */
|
||||
/* schedule that has been reversed to put the 1st decryption */
|
||||
/* round key at the low end of the schedule in memory (when */
|
||||
/* AES_REV_DKS is defined) */
|
||||
|
||||
#ifdef AES_REV_DKS
|
||||
#define key_ofs 0
|
||||
#define rnd_key(n) (kp + n * N_COLS)
|
||||
#else
|
||||
#define key_ofs 1
|
||||
#define rnd_key(n) (kp - n * N_COLS)
|
||||
#endif
|
||||
|
||||
aes_rval aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1])
|
||||
{ uint_32t locals(b0, b1);
|
||||
#if defined( dec_imvars )
|
||||
dec_imvars; /* declare variables for inv_mcol() if needed */
|
||||
#endif
|
||||
const uint_32t *kp;
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
|
||||
return EXIT_FAILURE;
|
||||
#endif
|
||||
|
||||
kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0);
|
||||
state_in(b0, in, kp);
|
||||
|
||||
#if (DEC_UNROLL == FULL)
|
||||
|
||||
kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2));
|
||||
switch(cx->inf.b[0])
|
||||
{
|
||||
case 14 * 16:
|
||||
round(inv_rnd, b1, b0, rnd_key(-13));
|
||||
round(inv_rnd, b0, b1, rnd_key(-12));
|
||||
case 12 * 16:
|
||||
round(inv_rnd, b1, b0, rnd_key(-11));
|
||||
round(inv_rnd, b0, b1, rnd_key(-10));
|
||||
case 10 * 16:
|
||||
round(inv_rnd, b1, b0, rnd_key(-9));
|
||||
round(inv_rnd, b0, b1, rnd_key(-8));
|
||||
round(inv_rnd, b1, b0, rnd_key(-7));
|
||||
round(inv_rnd, b0, b1, rnd_key(-6));
|
||||
round(inv_rnd, b1, b0, rnd_key(-5));
|
||||
round(inv_rnd, b0, b1, rnd_key(-4));
|
||||
round(inv_rnd, b1, b0, rnd_key(-3));
|
||||
round(inv_rnd, b0, b1, rnd_key(-2));
|
||||
round(inv_rnd, b1, b0, rnd_key(-1));
|
||||
round(inv_lrnd, b0, b1, rnd_key( 0));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#if (DEC_UNROLL == PARTIAL)
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
|
||||
{
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b0, b1, kp);
|
||||
}
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
#else
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
|
||||
{
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
l_copy(b0, b1);
|
||||
}
|
||||
#endif
|
||||
kp = rnd_key(1);
|
||||
round(inv_lrnd, b0, b1, kp);
|
||||
}
|
||||
#endif
|
||||
|
||||
state_out(out, b0);
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
578
src/crypto/aeskey.c
Normal file
578
src/crypto/aeskey.c
Normal file
@@ -0,0 +1,578 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 31/01/2006
|
||||
*/
|
||||
|
||||
#include "aesopt.h"
|
||||
#include "aestab.h"
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
#include "via_ace.h"
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* Initialise the key schedule from the user supplied key. The key
|
||||
length can be specified in bytes, with legal values of 16, 24
|
||||
and 32, or in bits, with legal values of 128, 192 and 256. These
|
||||
values correspond with Nk values of 4, 6 and 8 respectively.
|
||||
|
||||
The following macros implement a single cycle in the key
|
||||
schedule generation process. The number of cycles needed
|
||||
for each cx->n_col and nk value is:
|
||||
|
||||
nk = 4 5 6 7 8
|
||||
------------------------------
|
||||
cx->n_col = 4 10 9 8 7 7
|
||||
cx->n_col = 5 14 11 10 9 9
|
||||
cx->n_col = 6 19 15 12 11 11
|
||||
cx->n_col = 7 21 19 16 13 14
|
||||
cx->n_col = 8 29 23 19 17 14
|
||||
*/
|
||||
|
||||
#if (FUNCS_IN_C & ENC_KEYING_IN_C)
|
||||
|
||||
#if defined(AES_128) || defined(AES_VAR)
|
||||
|
||||
#define ke4(k,i) \
|
||||
{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
k[4*(i)+5] = ss[1] ^= ss[0]; \
|
||||
k[4*(i)+6] = ss[2] ^= ss[1]; \
|
||||
k[4*(i)+7] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
aes_rval aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint_32t ss[4];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
|
||||
#if ENC_UNROLL == NONE
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 9; ++i)
|
||||
ke4(cx->ks, i);
|
||||
}
|
||||
#else
|
||||
ke4(cx->ks, 0); ke4(cx->ks, 1);
|
||||
ke4(cx->ks, 2); ke4(cx->ks, 3);
|
||||
ke4(cx->ks, 4); ke4(cx->ks, 5);
|
||||
ke4(cx->ks, 6); ke4(cx->ks, 7);
|
||||
ke4(cx->ks, 8);
|
||||
#endif
|
||||
ke4(cx->ks, 9);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 10 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined(AES_VAR)
|
||||
|
||||
#define kef6(k,i) \
|
||||
{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
k[6*(i)+ 7] = ss[1] ^= ss[0]; \
|
||||
k[6*(i)+ 8] = ss[2] ^= ss[1]; \
|
||||
k[6*(i)+ 9] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define ke6(k,i) \
|
||||
{ kef6(k,i); \
|
||||
k[6*(i)+10] = ss[4] ^= ss[3]; \
|
||||
k[6*(i)+11] = ss[5] ^= ss[4]; \
|
||||
}
|
||||
|
||||
aes_rval aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint_32t ss[6];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
cx->ks[4] = ss[4] = word_in(key, 4);
|
||||
cx->ks[5] = ss[5] = word_in(key, 5);
|
||||
|
||||
#if ENC_UNROLL == NONE
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 7; ++i)
|
||||
ke6(cx->ks, i);
|
||||
}
|
||||
#else
|
||||
ke6(cx->ks, 0); ke6(cx->ks, 1);
|
||||
ke6(cx->ks, 2); ke6(cx->ks, 3);
|
||||
ke6(cx->ks, 4); ke6(cx->ks, 5);
|
||||
ke6(cx->ks, 6);
|
||||
#endif
|
||||
kef6(cx->ks, 7);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 12 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined(AES_VAR)
|
||||
|
||||
#define kef8(k,i) \
|
||||
{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
k[8*(i)+ 9] = ss[1] ^= ss[0]; \
|
||||
k[8*(i)+10] = ss[2] ^= ss[1]; \
|
||||
k[8*(i)+11] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define ke8(k,i) \
|
||||
{ kef8(k,i); \
|
||||
k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \
|
||||
k[8*(i)+13] = ss[5] ^= ss[4]; \
|
||||
k[8*(i)+14] = ss[6] ^= ss[5]; \
|
||||
k[8*(i)+15] = ss[7] ^= ss[6]; \
|
||||
}
|
||||
|
||||
aes_rval aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint_32t ss[8];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
cx->ks[4] = ss[4] = word_in(key, 4);
|
||||
cx->ks[5] = ss[5] = word_in(key, 5);
|
||||
cx->ks[6] = ss[6] = word_in(key, 6);
|
||||
cx->ks[7] = ss[7] = word_in(key, 7);
|
||||
|
||||
#if ENC_UNROLL == NONE
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 6; ++i)
|
||||
ke8(cx->ks, i);
|
||||
}
|
||||
#else
|
||||
ke8(cx->ks, 0); ke8(cx->ks, 1);
|
||||
ke8(cx->ks, 2); ke8(cx->ks, 3);
|
||||
ke8(cx->ks, 4); ke8(cx->ks, 5);
|
||||
#endif
|
||||
kef8(cx->ks, 6);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 14 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_VAR)
|
||||
|
||||
aes_rval aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1])
|
||||
{
|
||||
switch(key_len)
|
||||
{
|
||||
#if defined( AES_ERR_CHK )
|
||||
case 16: case 128: return aes_encrypt_key128(key, cx);
|
||||
case 24: case 192: return aes_encrypt_key192(key, cx);
|
||||
case 32: case 256: return aes_encrypt_key256(key, cx);
|
||||
default: return EXIT_FAILURE;
|
||||
#else
|
||||
case 16: case 128: aes_encrypt_key128(key, cx); return;
|
||||
case 24: case 192: aes_encrypt_key192(key, cx); return;
|
||||
case 32: case 256: aes_encrypt_key256(key, cx); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
|
||||
|
||||
/* this is used to store the decryption round keys */
|
||||
/* in forward or reverse order */
|
||||
|
||||
#ifdef AES_REV_DKS
|
||||
#define v(n,i) ((n) - (i) + 2 * ((i) & 3))
|
||||
#else
|
||||
#define v(n,i) (i)
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES
|
||||
#define ff(x) (x)
|
||||
#else
|
||||
#define ff(x) inv_mcol(x)
|
||||
#if defined( dec_imvars )
|
||||
#define d_vars dec_imvars
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(AES_128) || defined(AES_VAR)
|
||||
|
||||
#define k4e(k,i) \
|
||||
{ k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \
|
||||
k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \
|
||||
k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#if 1
|
||||
|
||||
#define kdf4(k,i) \
|
||||
{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
|
||||
ss[1] = ss[1] ^ ss[3]; \
|
||||
ss[2] = ss[2] ^ ss[3]; \
|
||||
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
|
||||
ss[i % 4] ^= ss[4]; \
|
||||
ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \
|
||||
}
|
||||
|
||||
#define kd4(k,i) \
|
||||
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
|
||||
ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
|
||||
k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \
|
||||
k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \
|
||||
k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \
|
||||
k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \
|
||||
}
|
||||
|
||||
#define kdl4(k,i) \
|
||||
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
|
||||
k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
|
||||
k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \
|
||||
k[v(40,(4*(i))+6)] = ss[0]; \
|
||||
k[v(40,(4*(i))+7)] = ss[1]; \
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define kdf4(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \
|
||||
}
|
||||
|
||||
#define kd4(k,i) \
|
||||
{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \
|
||||
}
|
||||
|
||||
#define kdl4(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
aes_rval aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint_32t ss[5];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
cx->ks[v(40,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(40,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(40,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(40,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#if DEC_UNROLL == NONE
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 10; ++i)
|
||||
k4e(cx->ks, i);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 10 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
kdf4(cx->ks, 0); kd4(cx->ks, 1);
|
||||
kd4(cx->ks, 2); kd4(cx->ks, 3);
|
||||
kd4(cx->ks, 4); kd4(cx->ks, 5);
|
||||
kd4(cx->ks, 6); kd4(cx->ks, 7);
|
||||
kd4(cx->ks, 8); kdl4(cx->ks, 9);
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 10 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined(AES_VAR)
|
||||
|
||||
#define k6ef(k,i) \
|
||||
{ k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \
|
||||
k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \
|
||||
k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define k6e(k,i) \
|
||||
{ k6ef(k,i); \
|
||||
k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \
|
||||
k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \
|
||||
}
|
||||
|
||||
#define kdf6(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \
|
||||
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \
|
||||
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \
|
||||
}
|
||||
|
||||
#define kd6(k,i) \
|
||||
{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \
|
||||
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \
|
||||
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \
|
||||
}
|
||||
|
||||
#define kdl6(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \
|
||||
}
|
||||
|
||||
aes_rval aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint_32t ss[7];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
cx->ks[v(48,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(48,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(48,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(48,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#if DEC_UNROLL == NONE
|
||||
cx->ks[v(48,(4))] = ss[4] = word_in(key, 4);
|
||||
cx->ks[v(48,(5))] = ss[5] = word_in(key, 5);
|
||||
{ uint_32t i;
|
||||
|
||||
for(i = 0; i < 7; ++i)
|
||||
k6e(cx->ks, i);
|
||||
k6ef(cx->ks, 7);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 12 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
cx->ks[v(48,(4))] = ff(ss[4] = word_in(key, 4));
|
||||
cx->ks[v(48,(5))] = ff(ss[5] = word_in(key, 5));
|
||||
kdf6(cx->ks, 0); kd6(cx->ks, 1);
|
||||
kd6(cx->ks, 2); kd6(cx->ks, 3);
|
||||
kd6(cx->ks, 4); kd6(cx->ks, 5);
|
||||
kd6(cx->ks, 6); kdl6(cx->ks, 7);
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 12 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined(AES_VAR)
|
||||
|
||||
#define k8ef(k,i) \
|
||||
{ k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \
|
||||
k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \
|
||||
k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define k8e(k,i) \
|
||||
{ k8ef(k,i); \
|
||||
k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \
|
||||
k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \
|
||||
k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \
|
||||
k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \
|
||||
}
|
||||
|
||||
#define kdf8(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \
|
||||
ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \
|
||||
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \
|
||||
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \
|
||||
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \
|
||||
}
|
||||
|
||||
#define kd8(k,i) \
|
||||
{ ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \
|
||||
ss[8] = ls_box(ss[3],0); \
|
||||
ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \
|
||||
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \
|
||||
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \
|
||||
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \
|
||||
}
|
||||
|
||||
#define kdl8(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \
|
||||
}
|
||||
|
||||
aes_rval aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint_32t ss[9];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
cx->ks[v(56,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(56,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(56,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(56,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#if DEC_UNROLL == NONE
|
||||
cx->ks[v(56,(4))] = ss[4] = word_in(key, 4);
|
||||
cx->ks[v(56,(5))] = ss[5] = word_in(key, 5);
|
||||
cx->ks[v(56,(6))] = ss[6] = word_in(key, 6);
|
||||
cx->ks[v(56,(7))] = ss[7] = word_in(key, 7);
|
||||
{ uint_32t i;
|
||||
|
||||
for(i = 0; i < 6; ++i)
|
||||
k8e(cx->ks, i);
|
||||
k8ef(cx->ks, 6);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 14 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
cx->ks[v(56,(4))] = ff(ss[4] = word_in(key, 4));
|
||||
cx->ks[v(56,(5))] = ff(ss[5] = word_in(key, 5));
|
||||
cx->ks[v(56,(6))] = ff(ss[6] = word_in(key, 6));
|
||||
cx->ks[v(56,(7))] = ff(ss[7] = word_in(key, 7));
|
||||
kdf8(cx->ks, 0); kd8(cx->ks, 1);
|
||||
kd8(cx->ks, 2); kd8(cx->ks, 3);
|
||||
kd8(cx->ks, 4); kd8(cx->ks, 5);
|
||||
kdl8(cx->ks, 6);
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 14 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_VAR)
|
||||
|
||||
aes_rval aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1])
|
||||
{
|
||||
switch(key_len)
|
||||
{
|
||||
#if defined( AES_ERR_CHK )
|
||||
case 16: case 128: return aes_decrypt_key128(key, cx);
|
||||
case 24: case 192: return aes_decrypt_key192(key, cx);
|
||||
case 32: case 256: return aes_decrypt_key256(key, cx);
|
||||
default: return EXIT_FAILURE;
|
||||
#else
|
||||
case 16: case 128: aes_decrypt_key128(key, cx); return;
|
||||
case 24: case 192: aes_decrypt_key192(key, cx); return;
|
||||
case 32: case 256: aes_decrypt_key256(key, cx); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
719
src/crypto/aesopt.h
Normal file
719
src/crypto/aesopt.h
Normal file
@@ -0,0 +1,719 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 31/01/2006
|
||||
|
||||
This file contains the compilation options for AES (Rijndael) and code
|
||||
that is common across encryption, key scheduling and table generation.
|
||||
|
||||
OPERATION
|
||||
|
||||
These source code files implement the AES algorithm Rijndael designed by
|
||||
Joan Daemen and Vincent Rijmen. This version is designed for the standard
|
||||
block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
|
||||
and 32 bytes).
|
||||
|
||||
This version is designed for flexibility and speed using operations on
|
||||
32-bit words rather than operations on bytes. It can be compiled with
|
||||
either big or little endian internal byte order but is faster when the
|
||||
native byte order for the processor is used.
|
||||
|
||||
THE CIPHER INTERFACE
|
||||
|
||||
The cipher interface is implemented as an array of bytes in which lower
|
||||
AES bit sequence indexes map to higher numeric significance within bytes.
|
||||
|
||||
uint_8t (an unsigned 8-bit type)
|
||||
uint_32t (an unsigned 32-bit type)
|
||||
struct aes_encrypt_ctx (structure for the cipher encryption context)
|
||||
struct aes_decrypt_ctx (structure for the cipher decryption context)
|
||||
aes_rval the function return type
|
||||
|
||||
C subroutine calls:
|
||||
|
||||
aes_rval aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
aes_rval aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
aes_rval aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
aes_rval aes_encrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_encrypt_ctx cx[1]);
|
||||
|
||||
aes_rval aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
aes_rval aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
aes_rval aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
aes_rval aes_decrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_decrypt_ctx cx[1]);
|
||||
|
||||
IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
|
||||
you call gen_tabs() before AES is used so that the tables are initialised.
|
||||
|
||||
C++ aes class subroutines:
|
||||
|
||||
Class AESencrypt for encryption
|
||||
|
||||
Construtors:
|
||||
AESencrypt(void)
|
||||
AESencrypt(const unsigned char *key) - 128 bit key
|
||||
Members:
|
||||
aes_rval key128(const unsigned char *key)
|
||||
aes_rval key192(const unsigned char *key)
|
||||
aes_rval key256(const unsigned char *key)
|
||||
aes_rval encrypt(const unsigned char *in, unsigned char *out) const
|
||||
|
||||
Class AESdecrypt for encryption
|
||||
Construtors:
|
||||
AESdecrypt(void)
|
||||
AESdecrypt(const unsigned char *key) - 128 bit key
|
||||
Members:
|
||||
aes_rval key128(const unsigned char *key)
|
||||
aes_rval key192(const unsigned char *key)
|
||||
aes_rval key256(const unsigned char *key)
|
||||
aes_rval decrypt(const unsigned char *in, unsigned char *out) const
|
||||
*/
|
||||
|
||||
#if !defined( _AESOPT_H )
|
||||
#define _AESOPT_H
|
||||
|
||||
#if defined( __cplusplus )
|
||||
#include "aescpp.h"
|
||||
#else
|
||||
#include "aes.h"
|
||||
#endif
|
||||
|
||||
/* PLATFORM SPECIFIC INCLUDES */
|
||||
|
||||
#include "aes_edefs.h"
|
||||
|
||||
/* CONFIGURATION - THE USE OF DEFINES
|
||||
|
||||
Later in this section there are a number of defines that control the
|
||||
operation of the code. In each section, the purpose of each define is
|
||||
explained so that the relevant form can be included or excluded by
|
||||
setting either 1's or 0's respectively on the branches of the related
|
||||
#if clauses. The following local defines should not be changed.
|
||||
*/
|
||||
|
||||
#define ENCRYPTION_IN_C 1
|
||||
#define DECRYPTION_IN_C 2
|
||||
#define ENC_KEYING_IN_C 4
|
||||
#define DEC_KEYING_IN_C 8
|
||||
|
||||
#define NO_TABLES 0
|
||||
#define ONE_TABLE 1
|
||||
#define FOUR_TABLES 4
|
||||
#define NONE 0
|
||||
#define PARTIAL 1
|
||||
#define FULL 2
|
||||
|
||||
/* --- START OF USER CONFIGURED OPTIONS --- */
|
||||
|
||||
/* 1. BYTE ORDER WITHIN 32 BIT WORDS
|
||||
|
||||
The fundamental data processing units in Rijndael are 8-bit bytes. The
|
||||
input, output and key input are all enumerated arrays of bytes in which
|
||||
bytes are numbered starting at zero and increasing to one less than the
|
||||
number of bytes in the array in question. This enumeration is only used
|
||||
for naming bytes and does not imply any adjacency or order relationship
|
||||
from one byte to another. When these inputs and outputs are considered
|
||||
as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
|
||||
byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
|
||||
In this implementation bits are numbered from 0 to 7 starting at the
|
||||
numerically least significant end of each byte (bit n represents 2^n).
|
||||
|
||||
However, Rijndael can be implemented more efficiently using 32-bit
|
||||
words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
|
||||
into word[n]. While in principle these bytes can be assembled into words
|
||||
in any positions, this implementation only supports the two formats in
|
||||
which bytes in adjacent positions within words also have adjacent byte
|
||||
numbers. This order is called big-endian if the lowest numbered bytes
|
||||
in words have the highest numeric significance and little-endian if the
|
||||
opposite applies.
|
||||
|
||||
This code can work in either order irrespective of the order used by the
|
||||
machine on which it runs. Normally the internal byte order will be set
|
||||
to the order of the processor on which the code is to be run but this
|
||||
define can be used to reverse this in special situations
|
||||
|
||||
WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
|
||||
This define will hence be redefined later (in section 4) if necessary
|
||||
*/
|
||||
|
||||
#if 1
|
||||
#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
|
||||
#elif 0
|
||||
#define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0
|
||||
#define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
#error The algorithm byte order is not defined
|
||||
#endif
|
||||
|
||||
/* 2. VIA ACE SUPPORT
|
||||
|
||||
Define this option if support for the VIA ACE is required. This uses
|
||||
inline assembler instructions and is only implemented for the Microsoft,
|
||||
Intel and GCC compilers. If VIA ACE is known to be present, then defining
|
||||
ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
|
||||
code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
|
||||
it is detected (both present and enabled) but the normal AES code will
|
||||
also be present.
|
||||
|
||||
When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
|
||||
aligned; other input/output buffers do not need to be 16 byte aligned
|
||||
but there are very large performance gains if this can be arranged.
|
||||
VIA ACE also requires the decryption key schedule to be in reverse
|
||||
order (which the following defines ensure).
|
||||
*/
|
||||
|
||||
#if 0 && !defined( _WIN64 ) && !defined( USE_VIA_ACE_IF_PRESENT )
|
||||
#define USE_VIA_ACE_IF_PRESENT
|
||||
#endif
|
||||
|
||||
#if 0 && !defined( _WIN64 ) && !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
#define ASSUME_VIA_ACE_PRESENT
|
||||
#endif
|
||||
|
||||
/* 3. ASSEMBLER SUPPORT
|
||||
|
||||
This define (which can be on the command line) enables the use of the
|
||||
assembler code routines for encryption, decryption and key scheduling
|
||||
as follows:
|
||||
|
||||
ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
|
||||
encryption, decryption and key scheduling
|
||||
ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
|
||||
Change one 'if 0' below to 'if 1' to select the version or define
|
||||
as a compilation option.
|
||||
*/
|
||||
|
||||
#if defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )
|
||||
# if defined( _M_IX86 )
|
||||
# if 0 && !defined( ASM_X86_V1C )
|
||||
# define ASM_X86_V1C
|
||||
# elif 0 && !defined( ASM_X86_V2 )
|
||||
# define ASM_X86_V2
|
||||
# elif 0 && !defined( ASM_X86_V2C )
|
||||
# define ASM_X86_V2C
|
||||
# endif
|
||||
# else
|
||||
# error Assembler code is only available for x86 and AMD64 systems
|
||||
# endif
|
||||
#elif defined( ASM_AMD64_C )
|
||||
# if defined( _M_X64 )
|
||||
# if 0 && !defined( ASM_AMD64_C )
|
||||
# define ASM_AMD64_C
|
||||
# endif
|
||||
# else
|
||||
# error Assembler code is only available for x86 and AMD64 systems
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* 4. FAST INPUT/OUTPUT OPERATIONS.
|
||||
|
||||
On some machines it is possible to improve speed by transferring the
|
||||
bytes in the input and output arrays to and from the internal 32-bit
|
||||
variables by addressing these arrays as if they are arrays of 32-bit
|
||||
words. On some machines this will always be possible but there may
|
||||
be a large performance penalty if the byte arrays are not aligned on
|
||||
the normal word boundaries. On other machines this technique will
|
||||
lead to memory access errors when such 32-bit word accesses are not
|
||||
properly aligned. The option SAFE_IO avoids such problems but will
|
||||
often be slower on those machines that support misaligned access
|
||||
(especially so if care is taken to align the input and output byte
|
||||
arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
|
||||
assumed that access to byte arrays as if they are arrays of 32-bit
|
||||
words will not cause problems when such accesses are misaligned.
|
||||
*/
|
||||
#if 1 && !defined( _MSC_VER )
|
||||
#define SAFE_IO
|
||||
#endif
|
||||
|
||||
/* 5. LOOP UNROLLING
|
||||
|
||||
The code for encryption and decrytpion cycles through a number of rounds
|
||||
that can be implemented either in a loop or by expanding the code into a
|
||||
long sequence of instructions, the latter producing a larger program but
|
||||
one that will often be much faster. The latter is called loop unrolling.
|
||||
There are also potential speed advantages in expanding two iterations in
|
||||
a loop with half the number of iterations, which is called partial loop
|
||||
unrolling. The following options allow partial or full loop unrolling
|
||||
to be set independently for encryption and decryption
|
||||
*/
|
||||
#if 1
|
||||
#define ENC_UNROLL FULL
|
||||
#elif 0
|
||||
#define ENC_UNROLL PARTIAL
|
||||
#else
|
||||
#define ENC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
#define DEC_UNROLL FULL
|
||||
#elif 0
|
||||
#define DEC_UNROLL PARTIAL
|
||||
#else
|
||||
#define DEC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
/* 6. FAST FINITE FIELD OPERATIONS
|
||||
|
||||
If this section is included, tables are used to provide faster finite
|
||||
field arithmetic (this has no effect if FIXED_TABLES is defined).
|
||||
*/
|
||||
#if 1
|
||||
#define FF_TABLES
|
||||
#endif
|
||||
|
||||
/* 7. INTERNAL STATE VARIABLE FORMAT
|
||||
|
||||
The internal state of Rijndael is stored in a number of local 32-bit
|
||||
word varaibles which can be defined either as an array or as individual
|
||||
names variables. Include this section if you want to store these local
|
||||
varaibles in arrays. Otherwise individual local variables will be used.
|
||||
*/
|
||||
#if 1
|
||||
#define ARRAYS
|
||||
#endif
|
||||
|
||||
/* 8. FIXED OR DYNAMIC TABLES
|
||||
|
||||
When this section is included the tables used by the code are compiled
|
||||
statically into the binary file. Otherwise the subroutine gen_tabs()
|
||||
must be called to compute them before the code is first used.
|
||||
*/
|
||||
#if 1 && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
|
||||
#define FIXED_TABLES
|
||||
#endif
|
||||
|
||||
/* 9. TABLE ALIGNMENT
|
||||
|
||||
On some sytsems speed will be improved by aligning the AES large lookup
|
||||
tables on particular boundaries. This define should be set to a power of
|
||||
two giving the desired alignment. It can be left undefined if alignment
|
||||
is not needed. This option is specific to the Microsft VC++ compiler -
|
||||
it seems to sometimes cause trouble for the VC++ version 6 compiler.
|
||||
*/
|
||||
|
||||
#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
|
||||
#define TABLE_ALIGN 32
|
||||
#endif
|
||||
|
||||
/* 10. TABLE OPTIONS
|
||||
|
||||
This cipher proceeds by repeating in a number of cycles known as 'rounds'
|
||||
which are implemented by a round function which can optionally be speeded
|
||||
up using tables. The basic tables are each 256 32-bit words, with either
|
||||
one or four tables being required for each round function depending on
|
||||
how much speed is required. The encryption and decryption round functions
|
||||
are different and the last encryption and decrytpion round functions are
|
||||
different again making four different round functions in all.
|
||||
|
||||
This means that:
|
||||
1. Normal encryption and decryption rounds can each use either 0, 1
|
||||
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
|
||||
2. The last encryption and decryption rounds can also use either 0, 1
|
||||
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
|
||||
|
||||
Include or exclude the appropriate definitions below to set the number
|
||||
of tables used by this implementation.
|
||||
*/
|
||||
|
||||
#if 1 /* set tables for the normal encryption round */
|
||||
#define ENC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
#define ENC_ROUND ONE_TABLE
|
||||
#else
|
||||
#define ENC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the last encryption round */
|
||||
#define LAST_ENC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
#define LAST_ENC_ROUND ONE_TABLE
|
||||
#else
|
||||
#define LAST_ENC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the normal decryption round */
|
||||
#define DEC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
#define DEC_ROUND ONE_TABLE
|
||||
#else
|
||||
#define DEC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the last decryption round */
|
||||
#define LAST_DEC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
#define LAST_DEC_ROUND ONE_TABLE
|
||||
#else
|
||||
#define LAST_DEC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
/* The decryption key schedule can be speeded up with tables in the same
|
||||
way that the round functions can. Include or exclude the following
|
||||
defines to set this requirement.
|
||||
*/
|
||||
#if 1
|
||||
#define KEY_SCHED FOUR_TABLES
|
||||
#elif 0
|
||||
#define KEY_SCHED ONE_TABLE
|
||||
#else
|
||||
#define KEY_SCHED NO_TABLES
|
||||
#endif
|
||||
|
||||
/* ---- END OF USER CONFIGURED OPTIONS ---- */
|
||||
|
||||
/* VIA ACE support is only available for VC++ and GCC */
|
||||
|
||||
#if !defined( _MSC_VER ) && !defined( __GNUC__ )
|
||||
# if defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# undef ASSUME_VIA_ACE_PRESENT
|
||||
# endif
|
||||
# if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
# undef USE_VIA_ACE_IF_PRESENT
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
|
||||
#define USE_VIA_ACE_IF_PRESENT
|
||||
#endif
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
|
||||
#define AES_REV_DKS
|
||||
#endif
|
||||
|
||||
/* Assembler support requires the use of platform byte order */
|
||||
|
||||
#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
|
||||
#undef ALGORITHM_BYTE_ORDER
|
||||
#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
|
||||
#endif
|
||||
|
||||
/* In this implementation the columns of the state array are each held in
|
||||
32-bit words. The state array can be held in various ways: in an array
|
||||
of words, in a number of individual word variables or in a number of
|
||||
processor registers. The following define maps a variable name x and
|
||||
a column number c to the way the state array variable is to be held.
|
||||
The first define below maps the state into an array x[c] whereas the
|
||||
second form maps the state into a number of individual variables x0,
|
||||
x1, etc. Another form could map individual state colums to machine
|
||||
register names.
|
||||
*/
|
||||
|
||||
#if defined( ARRAYS )
|
||||
#define s(x,c) x[c]
|
||||
#else
|
||||
#define s(x,c) x##c
|
||||
#endif
|
||||
|
||||
/* This implementation provides subroutines for encryption, decryption
|
||||
and for setting the three key lengths (separately) for encryption
|
||||
and decryption. Since not all functions are needed, masks are set
|
||||
up here to determine which will be implemented in C
|
||||
*/
|
||||
|
||||
#if !defined( AES_ENCRYPT )
|
||||
# define EFUNCS_IN_C 0
|
||||
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C )
|
||||
|| defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
|
||||
# define EFUNCS_IN_C ENC_KEYING_IN_C
|
||||
#elif !defined( ASM_X86_V2 )
|
||||
# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
|
||||
#else
|
||||
# define EFUNCS_IN_C 0
|
||||
#endif
|
||||
|
||||
#if !defined( AES_DECRYPT )
|
||||
# define DFUNCS_IN_C 0
|
||||
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C )
|
||||
|| defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
|
||||
# define DFUNCS_IN_C DEC_KEYING_IN_C
|
||||
#elif !defined( ASM_X86_V2 )
|
||||
# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
|
||||
#else
|
||||
# define DFUNCS_IN_C 0
|
||||
#endif
|
||||
|
||||
#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C )
|
||||
|
||||
/* END OF CONFIGURATION OPTIONS */
|
||||
|
||||
#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
|
||||
|
||||
/* Disable or report errors on some combinations of options */
|
||||
|
||||
#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
|
||||
#undef LAST_ENC_ROUND
|
||||
#define LAST_ENC_ROUND NO_TABLES
|
||||
#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
|
||||
#undef LAST_ENC_ROUND
|
||||
#define LAST_ENC_ROUND ONE_TABLE
|
||||
#endif
|
||||
|
||||
#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
|
||||
#undef ENC_UNROLL
|
||||
#define ENC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
|
||||
#undef LAST_DEC_ROUND
|
||||
#define LAST_DEC_ROUND NO_TABLES
|
||||
#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
|
||||
#undef LAST_DEC_ROUND
|
||||
#define LAST_DEC_ROUND ONE_TABLE
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
|
||||
#undef DEC_UNROLL
|
||||
#define DEC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if defined( bswap32 )
|
||||
#define aes_sw32 bswap32
|
||||
#elif defined( bswap_32 )
|
||||
#define aes_sw32 bswap_32
|
||||
#else
|
||||
#define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n)))
|
||||
#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
/* upr(x,n): rotates bytes within words by n positions, moving bytes to
|
||||
higher index positions with wrap around into low positions
|
||||
ups(x,n): moves bytes by n positions to higher index positions in
|
||||
words but without wrap around
|
||||
bval(x,n): extracts a byte from a word
|
||||
|
||||
WARNING: The definitions given here are intended only for use with
|
||||
unsigned variables and with shift counts that are compile
|
||||
time constants
|
||||
*/
|
||||
|
||||
#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
|
||||
#define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
|
||||
#define ups(x,n) ((uint_32t) (x) << (8 * (n)))
|
||||
#define bval(x,n) ((uint_8t)((x) >> (8 * (n))))
|
||||
#define bytes2word(b0, b1, b2, b3) \
|
||||
(((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
|
||||
#endif
|
||||
|
||||
#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
|
||||
#define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
|
||||
#define ups(x,n) ((uint_32t) (x) >> (8 * (n)))
|
||||
#define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n))))
|
||||
#define bytes2word(b0, b1, b2, b3) \
|
||||
(((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
|
||||
#endif
|
||||
|
||||
#if defined( SAFE_IO )
|
||||
|
||||
#define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
|
||||
((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
|
||||
#define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
|
||||
((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }
|
||||
|
||||
#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
|
||||
|
||||
#define word_in(x,c) (*((uint_32t*)(x)+(c)))
|
||||
#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))
|
||||
|
||||
#else
|
||||
|
||||
#define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c)))
|
||||
#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))
|
||||
|
||||
#endif
|
||||
|
||||
/* the finite field modular polynomial and elements */
|
||||
|
||||
#define WPOLY 0x011b
|
||||
#define BPOLY 0x1b
|
||||
|
||||
/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
|
||||
|
||||
#define m1 0x80808080
|
||||
#define m2 0x7f7f7f7f
|
||||
#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
|
||||
|
||||
/* The following defines provide alternative definitions of gf_mulx that might
|
||||
give improved performance if a fast 32-bit multiply is not available. Note
|
||||
that a temporary variable u needs to be defined where gf_mulx is used.
|
||||
|
||||
#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
|
||||
#define m4 (0x01010101 * BPOLY)
|
||||
#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
|
||||
*/
|
||||
|
||||
/* Work out which tables are needed for the different options */
|
||||
|
||||
#if defined( ASM_X86_V1C )
|
||||
#if defined( ENC_ROUND )
|
||||
#undef ENC_ROUND
|
||||
#endif
|
||||
#define ENC_ROUND FOUR_TABLES
|
||||
#if defined( LAST_ENC_ROUND )
|
||||
#undef LAST_ENC_ROUND
|
||||
#endif
|
||||
#define LAST_ENC_ROUND FOUR_TABLES
|
||||
#if defined( DEC_ROUND )
|
||||
#undef DEC_ROUND
|
||||
#endif
|
||||
#define DEC_ROUND FOUR_TABLES
|
||||
#if defined( LAST_DEC_ROUND )
|
||||
#undef LAST_DEC_ROUND
|
||||
#endif
|
||||
#define LAST_DEC_ROUND FOUR_TABLES
|
||||
#if defined( KEY_SCHED )
|
||||
#undef KEY_SCHED
|
||||
#define KEY_SCHED FOUR_TABLES
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
|
||||
#if ENC_ROUND == ONE_TABLE
|
||||
#define FT1_SET
|
||||
#elif ENC_ROUND == FOUR_TABLES
|
||||
#define FT4_SET
|
||||
#else
|
||||
#define SBX_SET
|
||||
#endif
|
||||
#if LAST_ENC_ROUND == ONE_TABLE
|
||||
#define FL1_SET
|
||||
#elif LAST_ENC_ROUND == FOUR_TABLES
|
||||
#define FL4_SET
|
||||
#elif !defined( SBX_SET )
|
||||
#define SBX_SET
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
|
||||
#if DEC_ROUND == ONE_TABLE
|
||||
#define IT1_SET
|
||||
#elif DEC_ROUND == FOUR_TABLES
|
||||
#define IT4_SET
|
||||
#else
|
||||
#define ISB_SET
|
||||
#endif
|
||||
#if LAST_DEC_ROUND == ONE_TABLE
|
||||
#define IL1_SET
|
||||
#elif LAST_DEC_ROUND == FOUR_TABLES
|
||||
#define IL4_SET
|
||||
#elif !defined(ISB_SET)
|
||||
#define ISB_SET
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)
|
||||
#if KEY_SCHED == ONE_TABLE
|
||||
#define LS1_SET
|
||||
#elif KEY_SCHED == FOUR_TABLES
|
||||
#define LS4_SET
|
||||
#elif !defined( SBX_SET )
|
||||
#define SBX_SET
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
|
||||
#if KEY_SCHED == ONE_TABLE
|
||||
#define IM1_SET
|
||||
#elif KEY_SCHED == FOUR_TABLES
|
||||
#define IM4_SET
|
||||
#elif !defined( SBX_SET )
|
||||
#define SBX_SET
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* generic definitions of Rijndael macros that use tables */
|
||||
|
||||
#define no_table(x,box,vf,rf,c) bytes2word( \
|
||||
box[bval(vf(x,0,c),rf(0,c))], \
|
||||
box[bval(vf(x,1,c),rf(1,c))], \
|
||||
box[bval(vf(x,2,c),rf(2,c))], \
|
||||
box[bval(vf(x,3,c),rf(3,c))])
|
||||
|
||||
#define one_table(x,op,tab,vf,rf,c) \
|
||||
( tab[bval(vf(x,0,c),rf(0,c))] \
|
||||
^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
|
||||
^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
|
||||
^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
|
||||
|
||||
#define four_tables(x,tab,vf,rf,c) \
|
||||
( tab[0][bval(vf(x,0,c),rf(0,c))] \
|
||||
^ tab[1][bval(vf(x,1,c),rf(1,c))] \
|
||||
^ tab[2][bval(vf(x,2,c),rf(2,c))] \
|
||||
^ tab[3][bval(vf(x,3,c),rf(3,c))])
|
||||
|
||||
#define vf1(x,r,c) (x)
|
||||
#define rf1(r,c) (r)
|
||||
#define rf2(r,c) ((8+r-c)&3)
|
||||
|
||||
/* perform forward and inverse column mix operation on four bytes in long word x in */
|
||||
/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
|
||||
|
||||
#if defined( FM4_SET ) /* not currently used */
|
||||
#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
|
||||
#elif defined( FM1_SET ) /* not currently used */
|
||||
#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
|
||||
#else
|
||||
#define dec_fmvars uint_32t g2
|
||||
#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
|
||||
#endif
|
||||
|
||||
#if defined( IM4_SET )
|
||||
#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
|
||||
#elif defined( IM1_SET )
|
||||
#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
|
||||
#else
|
||||
#define dec_imvars uint_32t g2, g4, g9
|
||||
#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
|
||||
(x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
|
||||
#endif
|
||||
|
||||
#if defined( FL4_SET )
|
||||
#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
|
||||
#elif defined( LS4_SET )
|
||||
#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
|
||||
#elif defined( FL1_SET )
|
||||
#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
|
||||
#elif defined( LS1_SET )
|
||||
#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
|
||||
#else
|
||||
#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
|
||||
#endif
|
||||
|
||||
#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
|
||||
#define ISB_SET
|
||||
#endif
|
||||
|
||||
#endif
|
||||
388
src/crypto/aestab.c
Normal file
388
src/crypto/aestab.c
Normal file
@@ -0,0 +1,388 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 31/01/2006
|
||||
*/
|
||||
|
||||
#define DO_TABLES
|
||||
|
||||
#include "aes.h"
|
||||
#include "aesopt.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined(FIXED_TABLES)
|
||||
|
||||
#define sb_data(w) {\
|
||||
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
|
||||
w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
|
||||
w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
|
||||
w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
|
||||
w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
|
||||
w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
|
||||
w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
|
||||
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
|
||||
w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
|
||||
w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
|
||||
w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
|
||||
w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
|
||||
w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
|
||||
w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
|
||||
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
|
||||
w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
|
||||
w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
|
||||
w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
|
||||
w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
|
||||
w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
|
||||
w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
|
||||
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
|
||||
w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
|
||||
w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
|
||||
w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
|
||||
w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
|
||||
w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
|
||||
w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
|
||||
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
|
||||
w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
|
||||
w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
|
||||
w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
|
||||
|
||||
#define isb_data(w) {\
|
||||
w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
|
||||
w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
|
||||
w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
|
||||
w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
|
||||
w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
|
||||
w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
|
||||
w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
|
||||
w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
|
||||
w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
|
||||
w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
|
||||
w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
|
||||
w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
|
||||
w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
|
||||
w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
|
||||
w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
|
||||
w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
|
||||
w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
|
||||
w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
|
||||
w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
|
||||
w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
|
||||
w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
|
||||
w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
|
||||
w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
|
||||
w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
|
||||
w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
|
||||
w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
|
||||
w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
|
||||
w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
|
||||
w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
|
||||
w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
|
||||
w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
|
||||
w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
|
||||
|
||||
#define mm_data(w) {\
|
||||
w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
|
||||
w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
|
||||
w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
|
||||
w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
|
||||
w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
|
||||
w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
|
||||
w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
|
||||
w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
|
||||
w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
|
||||
w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
|
||||
w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
|
||||
w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
|
||||
w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
|
||||
w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
|
||||
w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
|
||||
w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
|
||||
w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
|
||||
w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
|
||||
w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
|
||||
w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
|
||||
w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
|
||||
w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
|
||||
w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
|
||||
w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
|
||||
w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
|
||||
w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
|
||||
w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
|
||||
w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
|
||||
w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
|
||||
w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
|
||||
w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
|
||||
w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
|
||||
|
||||
#define rc_data(w) {\
|
||||
w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\
|
||||
w(0x1b), w(0x36) }
|
||||
|
||||
#define h0(x) (x)
|
||||
|
||||
#define w0(p) bytes2word(p, 0, 0, 0)
|
||||
#define w1(p) bytes2word(0, p, 0, 0)
|
||||
#define w2(p) bytes2word(0, 0, p, 0)
|
||||
#define w3(p) bytes2word(0, 0, 0, p)
|
||||
|
||||
#define u0(p) bytes2word(f2(p), p, p, f3(p))
|
||||
#define u1(p) bytes2word(f3(p), f2(p), p, p)
|
||||
#define u2(p) bytes2word(p, f3(p), f2(p), p)
|
||||
#define u3(p) bytes2word(p, p, f3(p), f2(p))
|
||||
|
||||
#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
|
||||
#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
|
||||
#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
|
||||
#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(FIXED_TABLES) || !defined(FF_TABLES)
|
||||
|
||||
#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
|
||||
#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
|
||||
#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
|
||||
^ (((x>>5) & 4) * WPOLY))
|
||||
#define f3(x) (f2(x) ^ x)
|
||||
#define f9(x) (f8(x) ^ x)
|
||||
#define fb(x) (f8(x) ^ f2(x) ^ x)
|
||||
#define fd(x) (f8(x) ^ f4(x) ^ x)
|
||||
#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
||||
|
||||
#else
|
||||
|
||||
#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
|
||||
#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
|
||||
#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
|
||||
#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
|
||||
#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
|
||||
#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
|
||||
#define fi(x) ((x) ? pow[ 255 - log[x]] : 0)
|
||||
|
||||
#endif
|
||||
|
||||
#include "aestab.h"
|
||||
|
||||
#if defined(FIXED_TABLES)
|
||||
|
||||
/* implemented in case of wrong call for fixed tables */
|
||||
|
||||
aes_rval gen_tabs(void)
|
||||
{
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#else /* dynamic table generation */
|
||||
|
||||
#if !defined(FF_TABLES)
|
||||
|
||||
/* Generate the tables for the dynamic table option
|
||||
|
||||
It will generally be sensible to use tables to compute finite
|
||||
field multiplies and inverses but where memory is scarse this
|
||||
code might sometimes be better. But it only has effect during
|
||||
initialisation so its pretty unimportant in overall terms.
|
||||
*/
|
||||
|
||||
/* return 2 ^ (n - 1) where n is the bit number of the highest bit
|
||||
set in x with x in the range 1 < x < 0x00000200. This form is
|
||||
used so that locals within fi can be bytes rather than words
|
||||
*/
|
||||
|
||||
static uint_8t hibit(const uint_32t x)
|
||||
{ uint_8t r = (uint_8t)((x >> 1) | (x >> 2));
|
||||
|
||||
r |= (r >> 2);
|
||||
r |= (r >> 4);
|
||||
return (r + 1) >> 1;
|
||||
}
|
||||
|
||||
/* return the inverse of the finite field element x */
|
||||
|
||||
static uint_8t fi(const uint_8t x)
|
||||
{ uint_8t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
|
||||
|
||||
if(x < 2) return x;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
if(!n1) return v1;
|
||||
|
||||
while(n2 >= n1)
|
||||
{
|
||||
n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2);
|
||||
}
|
||||
|
||||
if(!n2) return v2;
|
||||
|
||||
while(n1 >= n2)
|
||||
{
|
||||
n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* The forward and inverse affine transformations used in the S-box */
|
||||
|
||||
#define fwd_affine(x) \
|
||||
(w = (uint_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(uint_8t)(w^(w>>8)))
|
||||
|
||||
#define inv_affine(x) \
|
||||
(w = (uint_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(uint_8t)(w^(w>>8)))
|
||||
|
||||
static int init = 0;
|
||||
|
||||
aes_rval gen_tabs(void)
|
||||
{ uint_32t i, w;
|
||||
|
||||
#if defined(FF_TABLES)
|
||||
|
||||
uint_8t pow[512], log[256];
|
||||
|
||||
if(init)
|
||||
return EXIT_SUCCESS;
|
||||
/* log and power tables for GF(2^8) finite field with
|
||||
WPOLY as modular polynomial - the simplest primitive
|
||||
root is 0x03, used here to generate the tables
|
||||
*/
|
||||
|
||||
i = 0; w = 1;
|
||||
do
|
||||
{
|
||||
pow[i] = (uint_8t)w;
|
||||
pow[i + 255] = (uint_8t)w;
|
||||
log[w] = (uint_8t)i++;
|
||||
w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
|
||||
}
|
||||
while (w != 1);
|
||||
|
||||
#else
|
||||
if(init)
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
|
||||
for(i = 0, w = 1; i < RC_LENGTH; ++i)
|
||||
{
|
||||
t_set(r,c)[i] = bytes2word(w, 0, 0, 0);
|
||||
w = f2(w);
|
||||
}
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{ uint_8t b;
|
||||
|
||||
b = fwd_affine(fi((uint_8t)i));
|
||||
w = bytes2word(f2(b), b, b, f3(b));
|
||||
|
||||
#if defined( SBX_SET )
|
||||
t_set(s,box)[i] = b;
|
||||
#endif
|
||||
|
||||
#if defined( FT1_SET ) /* tables for a normal encryption round */
|
||||
t_set(f,n)[i] = w;
|
||||
#endif
|
||||
#if defined( FT4_SET )
|
||||
t_set(f,n)[0][i] = w;
|
||||
t_set(f,n)[1][i] = upr(w,1);
|
||||
t_set(f,n)[2][i] = upr(w,2);
|
||||
t_set(f,n)[3][i] = upr(w,3);
|
||||
#endif
|
||||
w = bytes2word(b, 0, 0, 0);
|
||||
|
||||
#if defined( FL1_SET ) /* tables for last encryption round (may also */
|
||||
t_set(f,l)[i] = w; /* be used in the key schedule) */
|
||||
#endif
|
||||
#if defined( FL4_SET )
|
||||
t_set(f,l)[0][i] = w;
|
||||
t_set(f,l)[1][i] = upr(w,1);
|
||||
t_set(f,l)[2][i] = upr(w,2);
|
||||
t_set(f,l)[3][i] = upr(w,3);
|
||||
#endif
|
||||
|
||||
#if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is */
|
||||
t_set(l,s)[i] = w; /* not of the required form */
|
||||
#endif
|
||||
#if defined( LS4_SET )
|
||||
t_set(l,s)[0][i] = w;
|
||||
t_set(l,s)[1][i] = upr(w,1);
|
||||
t_set(l,s)[2][i] = upr(w,2);
|
||||
t_set(l,s)[3][i] = upr(w,3);
|
||||
#endif
|
||||
|
||||
b = fi(inv_affine((uint_8t)i));
|
||||
w = bytes2word(fe(b), f9(b), fd(b), fb(b));
|
||||
|
||||
#if defined( IM1_SET ) /* tables for the inverse mix column operation */
|
||||
t_set(i,m)[b] = w;
|
||||
#endif
|
||||
#if defined( IM4_SET )
|
||||
t_set(i,m)[0][b] = w;
|
||||
t_set(i,m)[1][b] = upr(w,1);
|
||||
t_set(i,m)[2][b] = upr(w,2);
|
||||
t_set(i,m)[3][b] = upr(w,3);
|
||||
#endif
|
||||
|
||||
#if defined( ISB_SET )
|
||||
t_set(i,box)[i] = b;
|
||||
#endif
|
||||
#if defined( IT1_SET ) /* tables for a normal decryption round */
|
||||
t_set(i,n)[i] = w;
|
||||
#endif
|
||||
#if defined( IT4_SET )
|
||||
t_set(i,n)[0][i] = w;
|
||||
t_set(i,n)[1][i] = upr(w,1);
|
||||
t_set(i,n)[2][i] = upr(w,2);
|
||||
t_set(i,n)[3][i] = upr(w,3);
|
||||
#endif
|
||||
w = bytes2word(b, 0, 0, 0);
|
||||
#if defined( IL1_SET ) /* tables for last decryption round */
|
||||
t_set(i,l)[i] = w;
|
||||
#endif
|
||||
#if defined( IL4_SET )
|
||||
t_set(i,l)[0][i] = w;
|
||||
t_set(i,l)[1][i] = upr(w,1);
|
||||
t_set(i,l)[2][i] = upr(w,2);
|
||||
t_set(i,l)[3][i] = upr(w,3);
|
||||
#endif
|
||||
}
|
||||
init = 1;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
186
src/crypto/aestab.h
Normal file
186
src/crypto/aestab.h
Normal file
@@ -0,0 +1,186 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 31/01/2006
|
||||
|
||||
This file contains the code for declaring the tables needed to implement
|
||||
AES. The file aesopt.h is assumed to be included before this header file.
|
||||
If there are no global variables, the definitions here can be used to put
|
||||
the AES tables in a structure so that a pointer can then be added to the
|
||||
AES context to pass them to the AES routines that need them. If this
|
||||
facility is used, the calling program has to ensure that this pointer is
|
||||
managed appropriately. In particular, the value of the t_dec(in,it) item
|
||||
in the table structure must be set to zero in order to ensure that the
|
||||
tables are initialised. In practice the three code sequences in aeskey.c
|
||||
that control the calls to gen_tabs() and the gen_tabs() routine itself will
|
||||
have to be changed for a specific implementation. If global variables are
|
||||
available it will generally be preferable to use them with the precomputed
|
||||
FIXED_TABLES option that uses static global tables.
|
||||
|
||||
The following defines can be used to control the way the tables
|
||||
are defined, initialised and used in embedded environments that
|
||||
require special features for these purposes
|
||||
|
||||
the 't_dec' construction is used to declare fixed table arrays
|
||||
the 't_set' construction is used to set fixed table values
|
||||
the 't_use' construction is used to access fixed table values
|
||||
|
||||
256 byte tables:
|
||||
|
||||
t_xxx(s,box) => forward S box
|
||||
t_xxx(i,box) => inverse S box
|
||||
|
||||
256 32-bit word OR 4 x 256 32-bit word tables:
|
||||
|
||||
t_xxx(f,n) => forward normal round
|
||||
t_xxx(f,l) => forward last round
|
||||
t_xxx(i,n) => inverse normal round
|
||||
t_xxx(i,l) => inverse last round
|
||||
t_xxx(l,s) => key schedule table
|
||||
t_xxx(i,m) => key schedule table
|
||||
|
||||
Other variables and tables:
|
||||
|
||||
t_xxx(r,c) => the rcon table
|
||||
*/
|
||||
|
||||
#if !defined( _AESTAB_H )
|
||||
#define _AESTAB_H
|
||||
|
||||
#define t_dec(m,n) t_##m##n
|
||||
#define t_set(m,n) t_##m##n
|
||||
#define t_use(m,n) t_##m##n
|
||||
|
||||
#if defined(FIXED_TABLES)
|
||||
# if defined( __MSDOS__ ) || defined( __WIN16__ )
|
||||
/* make tables far data to avoid using too much DGROUP space (PG) */
|
||||
# define CONST const far
|
||||
# else
|
||||
# define CONST const
|
||||
# endif
|
||||
#else
|
||||
# define CONST
|
||||
#endif
|
||||
|
||||
#if defined(DO_TABLES)
|
||||
#define EXTERN
|
||||
#else
|
||||
#define EXTERN extern
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) && defined(TABLE_ALIGN)
|
||||
#define ALIGN __declspec(align(TABLE_ALIGN))
|
||||
#else
|
||||
#define ALIGN
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( __WATCOMC__)
|
||||
# define XP_DIR __cdecl
|
||||
#else
|
||||
# define XP_DIR
|
||||
#endif
|
||||
|
||||
#if defined(DO_TABLES) && defined(FIXED_TABLES)
|
||||
#define d_1(t,n,b,e) ALIGN CONST XP_DIR t n[256] = b(e)
|
||||
#define d_4(t,n,b,e,f,g,h) ALIGN CONST XP_DIR t n[4][256] = { b(e), b(f), b(g), b(h) }
|
||||
EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH] = rc_data(w0);
|
||||
#else
|
||||
#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256]
|
||||
#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256]
|
||||
EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH];
|
||||
#endif
|
||||
|
||||
#if defined( SBX_SET )
|
||||
d_1(uint_8t, t_dec(s,box), sb_data, h0);
|
||||
#endif
|
||||
#if defined( ISB_SET )
|
||||
d_1(uint_8t, t_dec(i,box), isb_data, h0);
|
||||
#endif
|
||||
|
||||
#if defined( FT1_SET )
|
||||
d_1(uint_32t, t_dec(f,n), sb_data, u0);
|
||||
#endif
|
||||
#if defined( FT4_SET )
|
||||
d_4(uint_32t, t_dec(f,n), sb_data, u0, u1, u2, u3);
|
||||
#endif
|
||||
|
||||
#if defined( FL1_SET )
|
||||
d_1(uint_32t, t_dec(f,l), sb_data, w0);
|
||||
#endif
|
||||
#if defined( FL4_SET )
|
||||
d_4(uint_32t, t_dec(f,l), sb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
|
||||
#if defined( IT1_SET )
|
||||
d_1(uint_32t, t_dec(i,n), isb_data, v0);
|
||||
#endif
|
||||
#if defined( IT4_SET )
|
||||
d_4(uint_32t, t_dec(i,n), isb_data, v0, v1, v2, v3);
|
||||
#endif
|
||||
|
||||
#if defined( IL1_SET )
|
||||
d_1(uint_32t, t_dec(i,l), isb_data, w0);
|
||||
#endif
|
||||
#if defined( IL4_SET )
|
||||
d_4(uint_32t, t_dec(i,l), isb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
|
||||
#if defined( LS1_SET )
|
||||
#if defined( FL1_SET )
|
||||
#undef LS1_SET
|
||||
#else
|
||||
d_1(uint_32t, t_dec(l,s), sb_data, w0);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined( LS4_SET )
|
||||
#if defined( FL4_SET )
|
||||
#undef LS4_SET
|
||||
#else
|
||||
d_4(uint_32t, t_dec(l,s), sb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined( IM1_SET )
|
||||
d_1(uint_32t, t_dec(i,m), mm_data, v0);
|
||||
#endif
|
||||
#if defined( IM4_SET )
|
||||
d_4(uint_32t, t_dec(i,m), mm_data, v0, v1, v2, v3);
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@@ -1,541 +0,0 @@
|
||||
/* 2003.05.02: Derived from libgcrypt-1.1.12 by Michael Buesch */
|
||||
|
||||
/* blowfish.c - Blowfish encryption
|
||||
* Copyright (C) 1998, 2001, 2002 Free Software Foundation, Inc.
|
||||
*
|
||||
* This file is part of Libgcrypt.
|
||||
*
|
||||
* Libgcrypt is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU Lesser general Public License as
|
||||
* published by the Free Software Foundation; either version 2.1 of
|
||||
* the License, or (at your option) any later version.
|
||||
*
|
||||
* Libgcrypt is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
||||
*
|
||||
* For a description of the algorithm, see:
|
||||
* Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
|
||||
* ISBN 0-471-11709-9. Pages 336 ff.
|
||||
*/
|
||||
|
||||
/* Test values:
|
||||
* key "abcdefghijklmnopqrstuvwxyz";
|
||||
* plain "BLOWFISH"
|
||||
* cipher 32 4E D0 FE F4 13 A2 03
|
||||
*
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "blowfish.h"
|
||||
|
||||
|
||||
|
||||
/* precomputed S boxes */
|
||||
static const uint32_t ks0[256] = {
|
||||
0xD1310BA6, 0x98DFB5AC, 0x2FFD72DB, 0xD01ADFB7, 0xB8E1AFED, 0x6A267E96,
|
||||
0xBA7C9045, 0xF12C7F99, 0x24A19947, 0xB3916CF7, 0x0801F2E2, 0x858EFC16,
|
||||
0x636920D8, 0x71574E69, 0xA458FEA3, 0xF4933D7E, 0x0D95748F, 0x728EB658,
|
||||
0x718BCD58, 0x82154AEE, 0x7B54A41D, 0xC25A59B5, 0x9C30D539, 0x2AF26013,
|
||||
0xC5D1B023, 0x286085F0, 0xCA417918, 0xB8DB38EF, 0x8E79DCB0, 0x603A180E,
|
||||
0x6C9E0E8B, 0xB01E8A3E, 0xD71577C1, 0xBD314B27, 0x78AF2FDA, 0x55605C60,
|
||||
0xE65525F3, 0xAA55AB94, 0x57489862, 0x63E81440, 0x55CA396A, 0x2AAB10B6,
|
||||
0xB4CC5C34, 0x1141E8CE, 0xA15486AF, 0x7C72E993, 0xB3EE1411, 0x636FBC2A,
|
||||
0x2BA9C55D, 0x741831F6, 0xCE5C3E16, 0x9B87931E, 0xAFD6BA33, 0x6C24CF5C,
|
||||
0x7A325381, 0x28958677, 0x3B8F4898, 0x6B4BB9AF, 0xC4BFE81B, 0x66282193,
|
||||
0x61D809CC, 0xFB21A991, 0x487CAC60, 0x5DEC8032, 0xEF845D5D, 0xE98575B1,
|
||||
0xDC262302, 0xEB651B88, 0x23893E81, 0xD396ACC5, 0x0F6D6FF3, 0x83F44239,
|
||||
0x2E0B4482, 0xA4842004, 0x69C8F04A, 0x9E1F9B5E, 0x21C66842, 0xF6E96C9A,
|
||||
0x670C9C61, 0xABD388F0, 0x6A51A0D2, 0xD8542F68, 0x960FA728, 0xAB5133A3,
|
||||
0x6EEF0B6C, 0x137A3BE4, 0xBA3BF050, 0x7EFB2A98, 0xA1F1651D, 0x39AF0176,
|
||||
0x66CA593E, 0x82430E88, 0x8CEE8619, 0x456F9FB4, 0x7D84A5C3, 0x3B8B5EBE,
|
||||
0xE06F75D8, 0x85C12073, 0x401A449F, 0x56C16AA6, 0x4ED3AA62, 0x363F7706,
|
||||
0x1BFEDF72, 0x429B023D, 0x37D0D724, 0xD00A1248, 0xDB0FEAD3, 0x49F1C09B,
|
||||
0x075372C9, 0x80991B7B, 0x25D479D8, 0xF6E8DEF7, 0xE3FE501A, 0xB6794C3B,
|
||||
0x976CE0BD, 0x04C006BA, 0xC1A94FB6, 0x409F60C4, 0x5E5C9EC2, 0x196A2463,
|
||||
0x68FB6FAF, 0x3E6C53B5, 0x1339B2EB, 0x3B52EC6F, 0x6DFC511F, 0x9B30952C,
|
||||
0xCC814544, 0xAF5EBD09, 0xBEE3D004, 0xDE334AFD, 0x660F2807, 0x192E4BB3,
|
||||
0xC0CBA857, 0x45C8740F, 0xD20B5F39, 0xB9D3FBDB, 0x5579C0BD, 0x1A60320A,
|
||||
0xD6A100C6, 0x402C7279, 0x679F25FE, 0xFB1FA3CC, 0x8EA5E9F8, 0xDB3222F8,
|
||||
0x3C7516DF, 0xFD616B15, 0x2F501EC8, 0xAD0552AB, 0x323DB5FA, 0xFD238760,
|
||||
0x53317B48, 0x3E00DF82, 0x9E5C57BB, 0xCA6F8CA0, 0x1A87562E, 0xDF1769DB,
|
||||
0xD542A8F6, 0x287EFFC3, 0xAC6732C6, 0x8C4F5573, 0x695B27B0, 0xBBCA58C8,
|
||||
0xE1FFA35D, 0xB8F011A0, 0x10FA3D98, 0xFD2183B8, 0x4AFCB56C, 0x2DD1D35B,
|
||||
0x9A53E479, 0xB6F84565, 0xD28E49BC, 0x4BFB9790, 0xE1DDF2DA, 0xA4CB7E33,
|
||||
0x62FB1341, 0xCEE4C6E8, 0xEF20CADA, 0x36774C01, 0xD07E9EFE, 0x2BF11FB4,
|
||||
0x95DBDA4D, 0xAE909198, 0xEAAD8E71, 0x6B93D5A0, 0xD08ED1D0, 0xAFC725E0,
|
||||
0x8E3C5B2F, 0x8E7594B7, 0x8FF6E2FB, 0xF2122B64, 0x8888B812, 0x900DF01C,
|
||||
0x4FAD5EA0, 0x688FC31C, 0xD1CFF191, 0xB3A8C1AD, 0x2F2F2218, 0xBE0E1777,
|
||||
0xEA752DFE, 0x8B021FA1, 0xE5A0CC0F, 0xB56F74E8, 0x18ACF3D6, 0xCE89E299,
|
||||
0xB4A84FE0, 0xFD13E0B7, 0x7CC43B81, 0xD2ADA8D9, 0x165FA266, 0x80957705,
|
||||
0x93CC7314, 0x211A1477, 0xE6AD2065, 0x77B5FA86, 0xC75442F5, 0xFB9D35CF,
|
||||
0xEBCDAF0C, 0x7B3E89A0, 0xD6411BD3, 0xAE1E7E49, 0x00250E2D, 0x2071B35E,
|
||||
0x226800BB, 0x57B8E0AF, 0x2464369B, 0xF009B91E, 0x5563911D, 0x59DFA6AA,
|
||||
0x78C14389, 0xD95A537F, 0x207D5BA2, 0x02E5B9C5, 0x83260376, 0x6295CFA9,
|
||||
0x11C81968, 0x4E734A41, 0xB3472DCA, 0x7B14A94A, 0x1B510052, 0x9A532915,
|
||||
0xD60F573F, 0xBC9BC6E4, 0x2B60A476, 0x81E67400, 0x08BA6FB5, 0x571BE91F,
|
||||
0xF296EC6B, 0x2A0DD915, 0xB6636521, 0xE7B9F9B6, 0xFF34052E, 0xC5855664,
|
||||
0x53B02D5D, 0xA99F8FA1, 0x08BA4799, 0x6E85076A
|
||||
};
|
||||
|
||||
static const uint32_t ks1[256] = {
|
||||
0x4B7A70E9, 0xB5B32944, 0xDB75092E, 0xC4192623, 0xAD6EA6B0, 0x49A7DF7D,
|
||||
0x9CEE60B8, 0x8FEDB266, 0xECAA8C71, 0x699A17FF, 0x5664526C, 0xC2B19EE1,
|
||||
0x193602A5, 0x75094C29, 0xA0591340, 0xE4183A3E, 0x3F54989A, 0x5B429D65,
|
||||
0x6B8FE4D6, 0x99F73FD6, 0xA1D29C07, 0xEFE830F5, 0x4D2D38E6, 0xF0255DC1,
|
||||
0x4CDD2086, 0x8470EB26, 0x6382E9C6, 0x021ECC5E, 0x09686B3F, 0x3EBAEFC9,
|
||||
0x3C971814, 0x6B6A70A1, 0x687F3584, 0x52A0E286, 0xB79C5305, 0xAA500737,
|
||||
0x3E07841C, 0x7FDEAE5C, 0x8E7D44EC, 0x5716F2B8, 0xB03ADA37, 0xF0500C0D,
|
||||
0xF01C1F04, 0x0200B3FF, 0xAE0CF51A, 0x3CB574B2, 0x25837A58, 0xDC0921BD,
|
||||
0xD19113F9, 0x7CA92FF6, 0x94324773, 0x22F54701, 0x3AE5E581, 0x37C2DADC,
|
||||
0xC8B57634, 0x9AF3DDA7, 0xA9446146, 0x0FD0030E, 0xECC8C73E, 0xA4751E41,
|
||||
0xE238CD99, 0x3BEA0E2F, 0x3280BBA1, 0x183EB331, 0x4E548B38, 0x4F6DB908,
|
||||
0x6F420D03, 0xF60A04BF, 0x2CB81290, 0x24977C79, 0x5679B072, 0xBCAF89AF,
|
||||
0xDE9A771F, 0xD9930810, 0xB38BAE12, 0xDCCF3F2E, 0x5512721F, 0x2E6B7124,
|
||||
0x501ADDE6, 0x9F84CD87, 0x7A584718, 0x7408DA17, 0xBC9F9ABC, 0xE94B7D8C,
|
||||
0xEC7AEC3A, 0xDB851DFA, 0x63094366, 0xC464C3D2, 0xEF1C1847, 0x3215D908,
|
||||
0xDD433B37, 0x24C2BA16, 0x12A14D43, 0x2A65C451, 0x50940002, 0x133AE4DD,
|
||||
0x71DFF89E, 0x10314E55, 0x81AC77D6, 0x5F11199B, 0x043556F1, 0xD7A3C76B,
|
||||
0x3C11183B, 0x5924A509, 0xF28FE6ED, 0x97F1FBFA, 0x9EBABF2C, 0x1E153C6E,
|
||||
0x86E34570, 0xEAE96FB1, 0x860E5E0A, 0x5A3E2AB3, 0x771FE71C, 0x4E3D06FA,
|
||||
0x2965DCB9, 0x99E71D0F, 0x803E89D6, 0x5266C825, 0x2E4CC978, 0x9C10B36A,
|
||||
0xC6150EBA, 0x94E2EA78, 0xA5FC3C53, 0x1E0A2DF4, 0xF2F74EA7, 0x361D2B3D,
|
||||
0x1939260F, 0x19C27960, 0x5223A708, 0xF71312B6, 0xEBADFE6E, 0xEAC31F66,
|
||||
0xE3BC4595, 0xA67BC883, 0xB17F37D1, 0x018CFF28, 0xC332DDEF, 0xBE6C5AA5,
|
||||
0x65582185, 0x68AB9802, 0xEECEA50F, 0xDB2F953B, 0x2AEF7DAD, 0x5B6E2F84,
|
||||
0x1521B628, 0x29076170, 0xECDD4775, 0x619F1510, 0x13CCA830, 0xEB61BD96,
|
||||
0x0334FE1E, 0xAA0363CF, 0xB5735C90, 0x4C70A239, 0xD59E9E0B, 0xCBAADE14,
|
||||
0xEECC86BC, 0x60622CA7, 0x9CAB5CAB, 0xB2F3846E, 0x648B1EAF, 0x19BDF0CA,
|
||||
0xA02369B9, 0x655ABB50, 0x40685A32, 0x3C2AB4B3, 0x319EE9D5, 0xC021B8F7,
|
||||
0x9B540B19, 0x875FA099, 0x95F7997E, 0x623D7DA8, 0xF837889A, 0x97E32D77,
|
||||
0x11ED935F, 0x16681281, 0x0E358829, 0xC7E61FD6, 0x96DEDFA1, 0x7858BA99,
|
||||
0x57F584A5, 0x1B227263, 0x9B83C3FF, 0x1AC24696, 0xCDB30AEB, 0x532E3054,
|
||||
0x8FD948E4, 0x6DBC3128, 0x58EBF2EF, 0x34C6FFEA, 0xFE28ED61, 0xEE7C3C73,
|
||||
0x5D4A14D9, 0xE864B7E3, 0x42105D14, 0x203E13E0, 0x45EEE2B6, 0xA3AAABEA,
|
||||
0xDB6C4F15, 0xFACB4FD0, 0xC742F442, 0xEF6ABBB5, 0x654F3B1D, 0x41CD2105,
|
||||
0xD81E799E, 0x86854DC7, 0xE44B476A, 0x3D816250, 0xCF62A1F2, 0x5B8D2646,
|
||||
0xFC8883A0, 0xC1C7B6A3, 0x7F1524C3, 0x69CB7492, 0x47848A0B, 0x5692B285,
|
||||
0x095BBF00, 0xAD19489D, 0x1462B174, 0x23820E00, 0x58428D2A, 0x0C55F5EA,
|
||||
0x1DADF43E, 0x233F7061, 0x3372F092, 0x8D937E41, 0xD65FECF1, 0x6C223BDB,
|
||||
0x7CDE3759, 0xCBEE7460, 0x4085F2A7, 0xCE77326E, 0xA6078084, 0x19F8509E,
|
||||
0xE8EFD855, 0x61D99735, 0xA969A7AA, 0xC50C06C2, 0x5A04ABFC, 0x800BCADC,
|
||||
0x9E447A2E, 0xC3453484, 0xFDD56705, 0x0E1E9EC9, 0xDB73DBD3, 0x105588CD,
|
||||
0x675FDA79, 0xE3674340, 0xC5C43465, 0x713E38D8, 0x3D28F89E, 0xF16DFF20,
|
||||
0x153E21E7, 0x8FB03D4A, 0xE6E39F2B, 0xDB83ADF7
|
||||
};
|
||||
|
||||
static const uint32_t ks2[256] = {
|
||||
0xE93D5A68, 0x948140F7, 0xF64C261C, 0x94692934, 0x411520F7, 0x7602D4F7,
|
||||
0xBCF46B2E, 0xD4A20068, 0xD4082471, 0x3320F46A, 0x43B7D4B7, 0x500061AF,
|
||||
0x1E39F62E, 0x97244546, 0x14214F74, 0xBF8B8840, 0x4D95FC1D, 0x96B591AF,
|
||||
0x70F4DDD3, 0x66A02F45, 0xBFBC09EC, 0x03BD9785, 0x7FAC6DD0, 0x31CB8504,
|
||||
0x96EB27B3, 0x55FD3941, 0xDA2547E6, 0xABCA0A9A, 0x28507825, 0x530429F4,
|
||||
0x0A2C86DA, 0xE9B66DFB, 0x68DC1462, 0xD7486900, 0x680EC0A4, 0x27A18DEE,
|
||||
0x4F3FFEA2, 0xE887AD8C, 0xB58CE006, 0x7AF4D6B6, 0xAACE1E7C, 0xD3375FEC,
|
||||
0xCE78A399, 0x406B2A42, 0x20FE9E35, 0xD9F385B9, 0xEE39D7AB, 0x3B124E8B,
|
||||
0x1DC9FAF7, 0x4B6D1856, 0x26A36631, 0xEAE397B2, 0x3A6EFA74, 0xDD5B4332,
|
||||
0x6841E7F7, 0xCA7820FB, 0xFB0AF54E, 0xD8FEB397, 0x454056AC, 0xBA489527,
|
||||
0x55533A3A, 0x20838D87, 0xFE6BA9B7, 0xD096954B, 0x55A867BC, 0xA1159A58,
|
||||
0xCCA92963, 0x99E1DB33, 0xA62A4A56, 0x3F3125F9, 0x5EF47E1C, 0x9029317C,
|
||||
0xFDF8E802, 0x04272F70, 0x80BB155C, 0x05282CE3, 0x95C11548, 0xE4C66D22,
|
||||
0x48C1133F, 0xC70F86DC, 0x07F9C9EE, 0x41041F0F, 0x404779A4, 0x5D886E17,
|
||||
0x325F51EB, 0xD59BC0D1, 0xF2BCC18F, 0x41113564, 0x257B7834, 0x602A9C60,
|
||||
0xDFF8E8A3, 0x1F636C1B, 0x0E12B4C2, 0x02E1329E, 0xAF664FD1, 0xCAD18115,
|
||||
0x6B2395E0, 0x333E92E1, 0x3B240B62, 0xEEBEB922, 0x85B2A20E, 0xE6BA0D99,
|
||||
0xDE720C8C, 0x2DA2F728, 0xD0127845, 0x95B794FD, 0x647D0862, 0xE7CCF5F0,
|
||||
0x5449A36F, 0x877D48FA, 0xC39DFD27, 0xF33E8D1E, 0x0A476341, 0x992EFF74,
|
||||
0x3A6F6EAB, 0xF4F8FD37, 0xA812DC60, 0xA1EBDDF8, 0x991BE14C, 0xDB6E6B0D,
|
||||
0xC67B5510, 0x6D672C37, 0x2765D43B, 0xDCD0E804, 0xF1290DC7, 0xCC00FFA3,
|
||||
0xB5390F92, 0x690FED0B, 0x667B9FFB, 0xCEDB7D9C, 0xA091CF0B, 0xD9155EA3,
|
||||
0xBB132F88, 0x515BAD24, 0x7B9479BF, 0x763BD6EB, 0x37392EB3, 0xCC115979,
|
||||
0x8026E297, 0xF42E312D, 0x6842ADA7, 0xC66A2B3B, 0x12754CCC, 0x782EF11C,
|
||||
0x6A124237, 0xB79251E7, 0x06A1BBE6, 0x4BFB6350, 0x1A6B1018, 0x11CAEDFA,
|
||||
0x3D25BDD8, 0xE2E1C3C9, 0x44421659, 0x0A121386, 0xD90CEC6E, 0xD5ABEA2A,
|
||||
0x64AF674E, 0xDA86A85F, 0xBEBFE988, 0x64E4C3FE, 0x9DBC8057, 0xF0F7C086,
|
||||
0x60787BF8, 0x6003604D, 0xD1FD8346, 0xF6381FB0, 0x7745AE04, 0xD736FCCC,
|
||||
0x83426B33, 0xF01EAB71, 0xB0804187, 0x3C005E5F, 0x77A057BE, 0xBDE8AE24,
|
||||
0x55464299, 0xBF582E61, 0x4E58F48F, 0xF2DDFDA2, 0xF474EF38, 0x8789BDC2,
|
||||
0x5366F9C3, 0xC8B38E74, 0xB475F255, 0x46FCD9B9, 0x7AEB2661, 0x8B1DDF84,
|
||||
0x846A0E79, 0x915F95E2, 0x466E598E, 0x20B45770, 0x8CD55591, 0xC902DE4C,
|
||||
0xB90BACE1, 0xBB8205D0, 0x11A86248, 0x7574A99E, 0xB77F19B6, 0xE0A9DC09,
|
||||
0x662D09A1, 0xC4324633, 0xE85A1F02, 0x09F0BE8C, 0x4A99A025, 0x1D6EFE10,
|
||||
0x1AB93D1D, 0x0BA5A4DF, 0xA186F20F, 0x2868F169, 0xDCB7DA83, 0x573906FE,
|
||||
0xA1E2CE9B, 0x4FCD7F52, 0x50115E01, 0xA70683FA, 0xA002B5C4, 0x0DE6D027,
|
||||
0x9AF88C27, 0x773F8641, 0xC3604C06, 0x61A806B5, 0xF0177A28, 0xC0F586E0,
|
||||
0x006058AA, 0x30DC7D62, 0x11E69ED7, 0x2338EA63, 0x53C2DD94, 0xC2C21634,
|
||||
0xBBCBEE56, 0x90BCB6DE, 0xEBFC7DA1, 0xCE591D76, 0x6F05E409, 0x4B7C0188,
|
||||
0x39720A3D, 0x7C927C24, 0x86E3725F, 0x724D9DB9, 0x1AC15BB4, 0xD39EB8FC,
|
||||
0xED545578, 0x08FCA5B5, 0xD83D7CD3, 0x4DAD0FC4, 0x1E50EF5E, 0xB161E6F8,
|
||||
0xA28514D9, 0x6C51133C, 0x6FD5C7E7, 0x56E14EC4, 0x362ABFCE, 0xDDC6C837,
|
||||
0xD79A3234, 0x92638212, 0x670EFA8E, 0x406000E0
|
||||
};
|
||||
|
||||
static const uint32_t ks3[256] = {
|
||||
0x3A39CE37, 0xD3FAF5CF, 0xABC27737, 0x5AC52D1B, 0x5CB0679E, 0x4FA33742,
|
||||
0xD3822740, 0x99BC9BBE, 0xD5118E9D, 0xBF0F7315, 0xD62D1C7E, 0xC700C47B,
|
||||
0xB78C1B6B, 0x21A19045, 0xB26EB1BE, 0x6A366EB4, 0x5748AB2F, 0xBC946E79,
|
||||
0xC6A376D2, 0x6549C2C8, 0x530FF8EE, 0x468DDE7D, 0xD5730A1D, 0x4CD04DC6,
|
||||
0x2939BBDB, 0xA9BA4650, 0xAC9526E8, 0xBE5EE304, 0xA1FAD5F0, 0x6A2D519A,
|
||||
0x63EF8CE2, 0x9A86EE22, 0xC089C2B8, 0x43242EF6, 0xA51E03AA, 0x9CF2D0A4,
|
||||
0x83C061BA, 0x9BE96A4D, 0x8FE51550, 0xBA645BD6, 0x2826A2F9, 0xA73A3AE1,
|
||||
0x4BA99586, 0xEF5562E9, 0xC72FEFD3, 0xF752F7DA, 0x3F046F69, 0x77FA0A59,
|
||||
0x80E4A915, 0x87B08601, 0x9B09E6AD, 0x3B3EE593, 0xE990FD5A, 0x9E34D797,
|
||||
0x2CF0B7D9, 0x022B8B51, 0x96D5AC3A, 0x017DA67D, 0xD1CF3ED6, 0x7C7D2D28,
|
||||
0x1F9F25CF, 0xADF2B89B, 0x5AD6B472, 0x5A88F54C, 0xE029AC71, 0xE019A5E6,
|
||||
0x47B0ACFD, 0xED93FA9B, 0xE8D3C48D, 0x283B57CC, 0xF8D56629, 0x79132E28,
|
||||
0x785F0191, 0xED756055, 0xF7960E44, 0xE3D35E8C, 0x15056DD4, 0x88F46DBA,
|
||||
0x03A16125, 0x0564F0BD, 0xC3EB9E15, 0x3C9057A2, 0x97271AEC, 0xA93A072A,
|
||||
0x1B3F6D9B, 0x1E6321F5, 0xF59C66FB, 0x26DCF319, 0x7533D928, 0xB155FDF5,
|
||||
0x03563482, 0x8ABA3CBB, 0x28517711, 0xC20AD9F8, 0xABCC5167, 0xCCAD925F,
|
||||
0x4DE81751, 0x3830DC8E, 0x379D5862, 0x9320F991, 0xEA7A90C2, 0xFB3E7BCE,
|
||||
0x5121CE64, 0x774FBE32, 0xA8B6E37E, 0xC3293D46, 0x48DE5369, 0x6413E680,
|
||||
0xA2AE0810, 0xDD6DB224, 0x69852DFD, 0x09072166, 0xB39A460A, 0x6445C0DD,
|
||||
0x586CDECF, 0x1C20C8AE, 0x5BBEF7DD, 0x1B588D40, 0xCCD2017F, 0x6BB4E3BB,
|
||||
0xDDA26A7E, 0x3A59FF45, 0x3E350A44, 0xBCB4CDD5, 0x72EACEA8, 0xFA6484BB,
|
||||
0x8D6612AE, 0xBF3C6F47, 0xD29BE463, 0x542F5D9E, 0xAEC2771B, 0xF64E6370,
|
||||
0x740E0D8D, 0xE75B1357, 0xF8721671, 0xAF537D5D, 0x4040CB08, 0x4EB4E2CC,
|
||||
0x34D2466A, 0x0115AF84, 0xE1B00428, 0x95983A1D, 0x06B89FB4, 0xCE6EA048,
|
||||
0x6F3F3B82, 0x3520AB82, 0x011A1D4B, 0x277227F8, 0x611560B1, 0xE7933FDC,
|
||||
0xBB3A792B, 0x344525BD, 0xA08839E1, 0x51CE794B, 0x2F32C9B7, 0xA01FBAC9,
|
||||
0xE01CC87E, 0xBCC7D1F6, 0xCF0111C3, 0xA1E8AAC7, 0x1A908749, 0xD44FBD9A,
|
||||
0xD0DADECB, 0xD50ADA38, 0x0339C32A, 0xC6913667, 0x8DF9317C, 0xE0B12B4F,
|
||||
0xF79E59B7, 0x43F5BB3A, 0xF2D519FF, 0x27D9459C, 0xBF97222C, 0x15E6FC2A,
|
||||
0x0F91FC71, 0x9B941525, 0xFAE59361, 0xCEB69CEB, 0xC2A86459, 0x12BAA8D1,
|
||||
0xB6C1075E, 0xE3056A0C, 0x10D25065, 0xCB03A442, 0xE0EC6E0E, 0x1698DB3B,
|
||||
0x4C98A0BE, 0x3278E964, 0x9F1F9532, 0xE0D392DF, 0xD3A0342B, 0x8971F21E,
|
||||
0x1B0A7441, 0x4BA3348C, 0xC5BE7120, 0xC37632D8, 0xDF359F8D, 0x9B992F2E,
|
||||
0xE60B6F47, 0x0FE3F11D, 0xE54CDA54, 0x1EDAD891, 0xCE6279CF, 0xCD3E7E6F,
|
||||
0x1618B166, 0xFD2C1D05, 0x848FD2C5, 0xF6FB2299, 0xF523F357, 0xA6327623,
|
||||
0x93A83531, 0x56CCCD02, 0xACF08162, 0x5A75EBB5, 0x6E163697, 0x88D273CC,
|
||||
0xDE966292, 0x81B949D0, 0x4C50901B, 0x71C65614, 0xE6C6C7BD, 0x327A140A,
|
||||
0x45E1D006, 0xC3F27B9A, 0xC9AA53FD, 0x62A80F00, 0xBB25BFE2, 0x35BDD2F6,
|
||||
0x71126905, 0xB2040222, 0xB6CBCF7C, 0xCD769C2B, 0x53113EC0, 0x1640E3D3,
|
||||
0x38ABBD60, 0x2547ADF0, 0xBA38209C, 0xF746CE76, 0x77AFA1C5, 0x20756060,
|
||||
0x85CBFE4E, 0x8AE88DD8, 0x7AAAF9B0, 0x4CF9AA7E, 0x1948C25C, 0x02FB8A8C,
|
||||
0x01C36AE4, 0xD6EBE1F9, 0x90D4F869, 0xA65CDEA0, 0x3F09252D, 0xC208E69F,
|
||||
0xB74E6132, 0xCE77E25B, 0x578FDFE3, 0x3AC372E6
|
||||
};
|
||||
|
||||
static const uint32_t ps[BLOWFISH_ROUNDS + 2] = {
|
||||
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0,
|
||||
0x082EFA98, 0xEC4E6C89, 0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C,
|
||||
0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917, 0x9216D5D9, 0x8979FB1B
|
||||
};
|
||||
|
||||
Blowfish::Blowfish()
|
||||
{ static bool mustSelfTest = false;
|
||||
}
|
||||
|
||||
void Blowfish::burn_stack(int bytes)
|
||||
{
|
||||
char buf[64];
|
||||
|
||||
memset(buf, 0, sizeof buf);
|
||||
bytes -= sizeof buf;
|
||||
if (bytes > 0)
|
||||
burn_stack(bytes);
|
||||
}
|
||||
|
||||
void Blowfish::do_encrypt(uint32_t * ret_xl, uint32_t * ret_xr)
|
||||
{
|
||||
#if BLOWFISH_ROUNDS == 16
|
||||
uint32_t xl, xr, *s0, *s1, *s2, *s3, *p;
|
||||
|
||||
xl = *ret_xl;
|
||||
xr = *ret_xr;
|
||||
p = bc.p;
|
||||
s0 = bc.s0;
|
||||
s1 = bc.s1;
|
||||
s2 = bc.s2;
|
||||
s3 = bc.s3;
|
||||
|
||||
R(xl, xr, 0, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 1, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 2, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 3, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 4, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 5, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 6, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 7, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 8, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 9, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 10, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 11, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 12, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 13, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 14, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 15, p, s0, s1, s2, s3);
|
||||
|
||||
xl ^= p[BLOWFISH_ROUNDS];
|
||||
xr ^= p[BLOWFISH_ROUNDS + 1];
|
||||
|
||||
*ret_xl = xr;
|
||||
*ret_xr = xl;
|
||||
|
||||
#else
|
||||
uint32_t xl, xr, temp, *p;
|
||||
int i;
|
||||
|
||||
xl = *ret_xl;
|
||||
xr = *ret_xr;
|
||||
p = bc.p;
|
||||
|
||||
for (i = 0; i < BLOWFISH_ROUNDS; i++) {
|
||||
xl ^= p[i];
|
||||
xr ^= function_F(xl);
|
||||
temp = xl;
|
||||
xl = xr;
|
||||
xr = temp;
|
||||
}
|
||||
temp = xl;
|
||||
xl = xr;
|
||||
xr = temp;
|
||||
|
||||
xr ^= p[BLOWFISH_ROUNDS];
|
||||
xl ^= p[BLOWFISH_ROUNDS + 1];
|
||||
|
||||
*ret_xl = xl;
|
||||
*ret_xr = xr;
|
||||
#endif
|
||||
}
|
||||
|
||||
void Blowfish::do_decrypt(uint32_t * ret_xl, uint32_t * ret_xr)
|
||||
{
|
||||
#if BLOWFISH_ROUNDS == 16
|
||||
uint32_t xl, xr, *s0, *s1, *s2, *s3, *p;
|
||||
|
||||
xl = *ret_xl;
|
||||
xr = *ret_xr;
|
||||
p = bc.p;
|
||||
s0 = bc.s0;
|
||||
s1 = bc.s1;
|
||||
s2 = bc.s2;
|
||||
s3 = bc.s3;
|
||||
|
||||
R(xl, xr, 17, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 16, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 15, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 14, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 13, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 12, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 11, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 10, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 9, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 8, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 7, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 6, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 5, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 4, p, s0, s1, s2, s3);
|
||||
R(xl, xr, 3, p, s0, s1, s2, s3);
|
||||
R(xr, xl, 2, p, s0, s1, s2, s3);
|
||||
|
||||
xl ^= p[1];
|
||||
xr ^= p[0];
|
||||
|
||||
*ret_xl = xr;
|
||||
*ret_xr = xl;
|
||||
|
||||
#else
|
||||
uint32_t xl, xr, temp, *p;
|
||||
int i;
|
||||
|
||||
xl = *ret_xl;
|
||||
xr = *ret_xr;
|
||||
p = bc.p;
|
||||
|
||||
for (i = BLOWFISH_ROUNDS + 1; i > 1; i--) {
|
||||
xl ^= p[i];
|
||||
xr ^= function_F(xl);
|
||||
temp = xl;
|
||||
xl = xr;
|
||||
xr = temp;
|
||||
}
|
||||
|
||||
temp = xl;
|
||||
xl = xr;
|
||||
xr = temp;
|
||||
|
||||
xr ^= p[1];
|
||||
xl ^= p[0];
|
||||
|
||||
*ret_xl = xl;
|
||||
*ret_xr = xr;
|
||||
#endif
|
||||
}
|
||||
|
||||
void Blowfish::do_encrypt_block(byte * outbuf, byte * inbuf)
|
||||
{
|
||||
uint32_t d1, d2;
|
||||
|
||||
d1 = inbuf[0] << 24 | inbuf[1] << 16 | inbuf[2] << 8 | inbuf[3];
|
||||
d2 = inbuf[4] << 24 | inbuf[5] << 16 | inbuf[6] << 8 | inbuf[7];
|
||||
do_encrypt(&d1, &d2);
|
||||
outbuf[0] = (d1 >> 24) & 0xff;
|
||||
outbuf[1] = (d1 >> 16) & 0xff;
|
||||
outbuf[2] = (d1 >> 8) & 0xff;
|
||||
outbuf[3] = d1 & 0xff;
|
||||
outbuf[4] = (d2 >> 24) & 0xff;
|
||||
outbuf[5] = (d2 >> 16) & 0xff;
|
||||
outbuf[6] = (d2 >> 8) & 0xff;
|
||||
outbuf[7] = d2 & 0xff;
|
||||
}
|
||||
|
||||
void Blowfish::encrypt_block(byte * outbuf, byte * inbuf)
|
||||
{
|
||||
do_encrypt_block(outbuf, inbuf);
|
||||
burn_stack(64);
|
||||
}
|
||||
|
||||
void Blowfish::do_decrypt_block(byte * outbuf, byte * inbuf)
|
||||
{
|
||||
uint32_t d1, d2;
|
||||
|
||||
d1 = inbuf[0] << 24 | inbuf[1] << 16 | inbuf[2] << 8 | inbuf[3];
|
||||
d2 = inbuf[4] << 24 | inbuf[5] << 16 | inbuf[6] << 8 | inbuf[7];
|
||||
do_decrypt(&d1, &d2);
|
||||
outbuf[0] = (d1 >> 24) & 0xff;
|
||||
outbuf[1] = (d1 >> 16) & 0xff;
|
||||
outbuf[2] = (d1 >> 8) & 0xff;
|
||||
outbuf[3] = d1 & 0xff;
|
||||
outbuf[4] = (d2 >> 24) & 0xff;
|
||||
outbuf[5] = (d2 >> 16) & 0xff;
|
||||
outbuf[6] = (d2 >> 8) & 0xff;
|
||||
outbuf[7] = d2 & 0xff;
|
||||
}
|
||||
|
||||
void Blowfish::decrypt_block(byte * outbuf, byte * inbuf)
|
||||
{
|
||||
do_decrypt_block(outbuf, inbuf);
|
||||
burn_stack(64);
|
||||
}
|
||||
|
||||
int Blowfish::do_bf_setkey(byte * key, unsigned int keylen)
|
||||
{
|
||||
int i, j;
|
||||
uint32_t data, datal, datar;
|
||||
|
||||
for (i = 0; i < BLOWFISH_ROUNDS + 2; ++i)
|
||||
bc.p[i] = ps[i];
|
||||
for (i = 0; i < 256; ++i) {
|
||||
bc.s0[i] = ks0[i];
|
||||
bc.s1[i] = ks1[i];
|
||||
bc.s2[i] = ks2[i];
|
||||
bc.s3[i] = ks3[i];
|
||||
}
|
||||
|
||||
for (i = j = 0; i < BLOWFISH_ROUNDS + 2; ++i) {
|
||||
#ifdef KEEPASS_BIG_ENDIAN
|
||||
((byte *) & data)[0] = key[j];
|
||||
((byte *) & data)[1] = key[(j + 1) % keylen];
|
||||
((byte *) & data)[2] = key[(j + 2) % keylen];
|
||||
((byte *) & data)[3] = key[(j + 3) % keylen];
|
||||
#else
|
||||
((byte *) & data)[3] = key[j];
|
||||
((byte *) & data)[2] = key[(j + 1) % keylen];
|
||||
((byte *) & data)[1] = key[(j + 2) % keylen];
|
||||
((byte *) & data)[0] = key[(j + 3) % keylen];
|
||||
#endif
|
||||
bc.p[i] ^= data;
|
||||
j = (j + 4) % keylen;
|
||||
}
|
||||
|
||||
datal = datar = 0;
|
||||
for (i = 0; i < BLOWFISH_ROUNDS + 2; i += 2) {
|
||||
do_encrypt(&datal, &datar);
|
||||
bc.p[i] = datal;
|
||||
bc.p[i + 1] = datar;
|
||||
}
|
||||
for (i = 0; i < 256; i += 2) {
|
||||
do_encrypt(&datal, &datar);
|
||||
bc.s0[i] = datal;
|
||||
bc.s0[i + 1] = datar;
|
||||
}
|
||||
for (i = 0; i < 256; i += 2) {
|
||||
do_encrypt(&datal, &datar);
|
||||
bc.s1[i] = datal;
|
||||
bc.s1[i + 1] = datar;
|
||||
}
|
||||
for (i = 0; i < 256; i += 2) {
|
||||
do_encrypt(&datal, &datar);
|
||||
bc.s2[i] = datal;
|
||||
bc.s2[i + 1] = datar;
|
||||
}
|
||||
for (i = 0; i < 256; i += 2) {
|
||||
do_encrypt(&datal, &datar);
|
||||
bc.s3[i] = datal;
|
||||
bc.s3[i + 1] = datar;
|
||||
}
|
||||
|
||||
/* Check for weak key. A weak key is a key in which a value in */
|
||||
/* the P-array (here c) occurs more than once per table. */
|
||||
for (i = 0; i < 255; ++i) {
|
||||
for (j = i + 1; j < 256; ++j) {
|
||||
if ((bc.s0[i] == bc.s0[j]) || (bc.s1[i] == bc.s1[j]) ||
|
||||
(bc.s2[i] == bc.s2[j]) || (bc.s3[i] == bc.s3[j]))
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int Blowfish::bf_setkey(byte * key, unsigned int keylen)
|
||||
{
|
||||
int rc = do_bf_setkey(key, keylen);
|
||||
burn_stack(64);
|
||||
return rc;
|
||||
}
|
||||
|
||||
int Blowfish::bf_encrypt(byte * outbuf, byte * inbuf, unsigned int inbuf_len)
|
||||
{
|
||||
if (inbuf_len % 8)
|
||||
return 1;
|
||||
|
||||
unsigned int i = 0;
|
||||
while (i < inbuf_len) {
|
||||
encrypt_block(outbuf + i, inbuf + i);
|
||||
i += 8;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int Blowfish::bf_decrypt(byte * outbuf, byte * inbuf, unsigned int inbuf_len)
|
||||
{
|
||||
if (inbuf_len % 8)
|
||||
return 1;
|
||||
|
||||
unsigned int i = 0;
|
||||
while (i < inbuf_len) {
|
||||
decrypt_block(outbuf + i, inbuf + i);
|
||||
i += 8;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void Blowfish::padNull(string *buf)
|
||||
{
|
||||
buf->append(1, (char)0x01);
|
||||
string::size_type append_null = 8 - (buf->length() % 8);
|
||||
buf->append(append_null, (char)0x00);
|
||||
}
|
||||
|
||||
bool Blowfish::unpadNull(string *buf)
|
||||
{
|
||||
if (buf->size() % 8)
|
||||
return false;
|
||||
string::size_type pos = buf->length() - 1;
|
||||
while ((*buf)[pos] != (char)0x01) {
|
||||
if (pos == 0)
|
||||
return false;
|
||||
--pos;
|
||||
}
|
||||
buf->erase(pos, buf->length() - pos);
|
||||
return true;
|
||||
}
|
||||
@@ -1,115 +0,0 @@
|
||||
/***************************************************************************
|
||||
* *
|
||||
* copyright (C) 2003, 2004 by Michael Buesch *
|
||||
* email: mbuesch@freenet.de *
|
||||
* *
|
||||
* blowfish.c - Blowfish encryption *
|
||||
* Copyright (C) 1998, 2001, 2002 Free Software Foundation, Inc. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License version 2 *
|
||||
* as published by the Free Software Foundation. *
|
||||
* *
|
||||
***************************************************************************/
|
||||
|
||||
#ifndef BLOWFISH_H
|
||||
#define BLOWFISH_H
|
||||
|
||||
#include "global.h"
|
||||
#include <qglobal.h>
|
||||
//#include <stdint.h>
|
||||
#include <string>
|
||||
using std::string;
|
||||
|
||||
#define BLOWFISH_BLOCKSIZE 8
|
||||
#define BLOWFISH_ROUNDS 16
|
||||
#define CIPHER_ALGO_BLOWFISH 4 /* blowfish 128 bit key */
|
||||
|
||||
#define uint8_t quint8
|
||||
#define uint16_t quint16
|
||||
#define uint32_t quint32
|
||||
#define byte quint8
|
||||
|
||||
/** blowfish encryption algorithm.
|
||||
* Derived from libgcrypt-1.1.12
|
||||
*/
|
||||
|
||||
class Blowfish
|
||||
{
|
||||
struct BLOWFISH_context
|
||||
{
|
||||
uint32_t s0[256];
|
||||
uint32_t s1[256];
|
||||
uint32_t s2[256];
|
||||
uint32_t s3[256];
|
||||
uint32_t p[BLOWFISH_ROUNDS+2];
|
||||
};
|
||||
|
||||
public:
|
||||
Blowfish();
|
||||
|
||||
/** set key to encrypt. if return == 1, it is a weak key. */
|
||||
int bf_setkey( byte *key, unsigned int keylen );
|
||||
/** encrypt inbuf and return it in outbuf.
|
||||
* inbuf and outbuf have to be: buf % 8 == 0
|
||||
* You may check this with getPaddedLen() and pad with NULL.
|
||||
*/
|
||||
int bf_encrypt( byte *outbuf, byte *inbuf, unsigned int inbuf_len );
|
||||
/** decrypt inbuf and return it in outbuf.
|
||||
* inbuf and outbuf have to be: buf % 8 == 0
|
||||
* You may check this with getPaddedLen() and pad with NULL.
|
||||
*/
|
||||
int bf_decrypt( byte *outbuf, byte *inbuf, unsigned int inbuf_len );
|
||||
/** returns the length, the sting has to be padded to */
|
||||
static unsigned int getPaddedLen(unsigned int inLen)
|
||||
{ return ((8 - (inLen % 8)) + inLen); }
|
||||
/** pad up to 8 bytes. */
|
||||
static void padNull(string *buf);
|
||||
/** remove padded data */
|
||||
static bool unpadNull(string *buf);
|
||||
|
||||
protected:
|
||||
#if BLOWFISH_ROUNDS != 16
|
||||
uint32_t function_F( uint32_t x)
|
||||
{
|
||||
uint16_t a, b, c, d;
|
||||
#ifdef KEEPASS_BIG_ENDIAN
|
||||
a = ((byte *) & x)[0];
|
||||
b = ((byte *) & x)[1];
|
||||
c = ((byte *) & x)[2];
|
||||
d = ((byte *) & x)[3];
|
||||
#else
|
||||
a = ((byte *) & x)[3];
|
||||
b = ((byte *) & x)[2];
|
||||
c = ((byte *) & x)[1];
|
||||
d = ((byte *) & x)[0];
|
||||
#endif
|
||||
return ((bc.s0[a] + bc.s1[b]) ^ bc.s2[c]) + bc.s3[d];
|
||||
}
|
||||
#endif
|
||||
void R(uint32_t &l, uint32_t &r, uint32_t i, uint32_t *p,
|
||||
uint32_t *s0, uint32_t *s1, uint32_t *s2, uint32_t *s3)
|
||||
{
|
||||
l ^= p[i];
|
||||
#ifdef KEEPASS_BIG_ENDIAN
|
||||
r ^= (( s0[((byte*)&l)[0]] + s1[((byte*)&l)[1]])
|
||||
^ s2[((byte*)&l)[2]]) + s3[((byte*)&l)[3]];
|
||||
#else
|
||||
r ^= (( s0[((byte*)&l)[3]] + s1[((byte*)&l)[2]])
|
||||
^ s2[((byte*)&l)[1]]) + s3[((byte*)&l)[0]];
|
||||
#endif
|
||||
}
|
||||
void encrypt_block(byte *outbuf, byte *inbuf);
|
||||
void decrypt_block(byte *outbuf, byte *inbuf);
|
||||
void burn_stack(int bytes);
|
||||
void do_encrypt(uint32_t *ret_xl, uint32_t *ret_xr);
|
||||
void do_decrypt(uint32_t *ret_xl, uint32_t *ret_xr);
|
||||
void do_encrypt_block(byte *outbuf, byte *inbuf);
|
||||
void do_decrypt_block(byte *outbuf, byte *inbuf);
|
||||
int do_bf_setkey(byte *key, unsigned int keylen);
|
||||
|
||||
protected:
|
||||
struct BLOWFISH_context bc;
|
||||
};
|
||||
|
||||
#endif
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,158 +0,0 @@
|
||||
#ifndef _RIJNDAEL_H_
|
||||
#define _RIJNDAEL_H_
|
||||
|
||||
// This file is based on Szymon Stefanek's Rijndael implementation.
|
||||
// All I have done is changed the variable type definitions, not more.
|
||||
// The original header is below.
|
||||
|
||||
//
|
||||
// File : rijndael.h
|
||||
// Creation date : Sun Nov 5 2000 03:21:05 CEST
|
||||
// Author : Szymon Stefanek (stefanek@tin.it)
|
||||
//
|
||||
// Another implementation of the Rijndael cipher.
|
||||
// This is intended to be an easily usable library file.
|
||||
// This code is public domain.
|
||||
// Based on the Vincent Rijmen and K.U.Leuven implementation 2.4.
|
||||
//
|
||||
|
||||
//
|
||||
// Original Copyright notice:
|
||||
//
|
||||
// rijndael-alg-fst.c v2.4 April '2000
|
||||
// rijndael-alg-fst.h
|
||||
// rijndael-api-fst.c
|
||||
// rijndael-api-fst.h
|
||||
//
|
||||
// Optimised ANSI C code
|
||||
//
|
||||
// authors: v1.0: Antoon Bosselaers
|
||||
// v2.0: Vincent Rijmen, K.U.Leuven
|
||||
// v2.3: Paulo Barreto
|
||||
// v2.4: Vincent Rijmen, K.U.Leuven
|
||||
//
|
||||
// This code is placed in the public domain.
|
||||
//
|
||||
|
||||
//
|
||||
// This implementation works on 128 , 192 , 256 bit keys
|
||||
// and on 128 bit blocks
|
||||
//
|
||||
|
||||
//
|
||||
// Example of usage:
|
||||
//
|
||||
// // Input data
|
||||
// unsigned char key[32]; // The key
|
||||
// initializeYour256BitKey(); // Obviously initialized with sth
|
||||
// const unsigned char * plainText = getYourPlainText(); // Your plain text
|
||||
// int plainTextLen = strlen(plainText); // Plain text length
|
||||
//
|
||||
// // Encrypting
|
||||
// Rijndael rin;
|
||||
// unsigned char output[plainTextLen + 16];
|
||||
//
|
||||
// rin.init(Rijndael::CBC,Rijndael::Encrypt,key,Rijndael::Key32Bytes);
|
||||
// // It is a good idea to check the error code
|
||||
// int len = rin.padEncrypt(plainText,len,output);
|
||||
// if(len >= 0)useYourEncryptedText();
|
||||
// else encryptError(len);
|
||||
//
|
||||
// // Decrypting: we can reuse the same object
|
||||
// unsigned char output2[len];
|
||||
// rin.init(Rijndael::CBC,Rijndael::Decrypt,key,Rijndael::Key32Bytes));
|
||||
// len = rin.padDecrypt(output,len,output2);
|
||||
// if(len >= 0)useYourDecryptedText();
|
||||
// else decryptError(len);
|
||||
//
|
||||
|
||||
#define _MAX_KEY_COLUMNS (256/32)
|
||||
#define _MAX_ROUNDS 14
|
||||
#define MAX_IV_SIZE 16
|
||||
|
||||
#include <qglobal.h>
|
||||
|
||||
// Error codes
|
||||
#define RIJNDAEL_SUCCESS 0
|
||||
#define RIJNDAEL_UNSUPPORTED_MODE -1
|
||||
#define RIJNDAEL_UNSUPPORTED_DIRECTION -2
|
||||
#define RIJNDAEL_UNSUPPORTED_KEY_LENGTH -3
|
||||
#define RIJNDAEL_BAD_KEY -4
|
||||
#define RIJNDAEL_NOT_INITIALIZED -5
|
||||
#define RIJNDAEL_BAD_DIRECTION -6
|
||||
#define RIJNDAEL_CORRUPTED_DATA -7
|
||||
|
||||
class Rijndael
|
||||
{
|
||||
public:
|
||||
enum Direction { Encrypt , Decrypt };
|
||||
enum Mode { ECB , CBC , CFB1 };
|
||||
enum KeyLength { Key16Bytes , Key24Bytes , Key32Bytes };
|
||||
//
|
||||
// Creates a Rijndael cipher object
|
||||
// You have to call init() before you can encrypt or decrypt stuff
|
||||
//
|
||||
Rijndael();
|
||||
~Rijndael();
|
||||
protected:
|
||||
// Internal stuff
|
||||
enum State { Valid , Invalid };
|
||||
|
||||
State m_state;
|
||||
Mode m_mode;
|
||||
Direction m_direction;
|
||||
quint8 m_initVector[MAX_IV_SIZE];
|
||||
quint32 m_uRounds;
|
||||
quint8 m_expandedKey[_MAX_ROUNDS+1][4][4];
|
||||
public:
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// API
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// init(): Initializes the crypt session
|
||||
// Returns RIJNDAEL_SUCCESS or an error code
|
||||
// mode : Rijndael::ECB, Rijndael::CBC or Rijndael::CFB1
|
||||
// You have to use the same mode for encrypting and decrypting
|
||||
// dir : Rijndael::Encrypt or Rijndael::Decrypt
|
||||
// A cipher instance works only in one direction
|
||||
// (Well , it could be easily modified to work in both
|
||||
// directions with a single init() call, but it looks
|
||||
// useless to me...anyway , it is a matter of generating
|
||||
// two expanded keys)
|
||||
// key : array of unsigned octets , it can be 16 , 24 or 32 bytes long
|
||||
// this CAN be binary data (it is not expected to be null terminated)
|
||||
// keyLen : Rijndael::Key16Bytes , Rijndael::Key24Bytes or Rijndael::Key32Bytes
|
||||
// initVector: initialization vector, you will usually use 0 here
|
||||
int init(Mode mode,Direction dir,const quint8 *key,KeyLength keyLen,quint8 * initVector = 0);
|
||||
// Encrypts the input array (can be binary data)
|
||||
// The input array length must be a multiple of 16 bytes, the remaining part
|
||||
// is DISCARDED.
|
||||
// so it actually encrypts inputLen / 128 blocks of input and puts it in outBuffer
|
||||
// Input len is in BITS!
|
||||
// outBuffer must be at least inputLen / 8 bytes long.
|
||||
// Returns the encrypted buffer length in BITS or an error code < 0 in case of error
|
||||
int blockEncrypt(const quint8 *input, int inputLen, quint8 *outBuffer);
|
||||
// Encrypts the input array (can be binary data)
|
||||
// The input array can be any length , it is automatically padded on a 16 byte boundary.
|
||||
// Input len is in BYTES!
|
||||
// outBuffer must be at least (inputLen + 16) bytes long
|
||||
// Returns the encrypted buffer length in BYTES or an error code < 0 in case of error
|
||||
int padEncrypt(const quint8 *input, int inputOctets, quint8 *outBuffer);
|
||||
// Decrypts the input vector
|
||||
// Input len is in BITS!
|
||||
// outBuffer must be at least inputLen / 8 bytes long
|
||||
// Returns the decrypted buffer length in BITS and an error code < 0 in case of error
|
||||
int blockDecrypt(const quint8 *input, int inputLen, quint8 *outBuffer);
|
||||
// Decrypts the input vector
|
||||
// Input len is in BYTES!
|
||||
// outBuffer must be at least inputLen bytes long
|
||||
// Returns the decrypted buffer length in BYTES and an error code < 0 in case of error
|
||||
int padDecrypt(const quint8 *input, int inputOctets, quint8 *outBuffer);
|
||||
protected:
|
||||
void keySched(quint8 key[_MAX_KEY_COLUMNS][4]);
|
||||
void keyEncToDec();
|
||||
void encrypt(const quint8 a[16], quint8 b[16]);
|
||||
void decrypt(const quint8 a[16], quint8 b[16]);
|
||||
};
|
||||
|
||||
#endif // _RIJNDAEL_H_
|
||||
@@ -1,257 +0,0 @@
|
||||
/*
|
||||
100% free public domain implementation of the SHA-1 algorithm
|
||||
by Dominik Reichl <dominik.reichl@t-online.de>
|
||||
|
||||
Version 1.5 - 2005-01-01
|
||||
- 64-bit compiler compatibility added
|
||||
- Made variable wiping optional (define SHA1_WIPE_VARIABLES)
|
||||
- Removed unnecessary variable initializations
|
||||
- ROL32 improvement for the Microsoft compiler (using _rotl)
|
||||
|
||||
======== Test Vectors (from FIPS PUB 180-1) ========
|
||||
|
||||
SHA1("abc") =
|
||||
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
|
||||
|
||||
SHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq") =
|
||||
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
|
||||
|
||||
SHA1(A million repetitions of "a") =
|
||||
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
|
||||
*/
|
||||
#include "global.h"
|
||||
#include "sha1.h"
|
||||
|
||||
#define SHA1_MAX_FILE_BUFFER 8000
|
||||
|
||||
// Rotate x bits to the left
|
||||
#ifndef ROL32
|
||||
#define ROL32(_val32, _nBits) (((_val32)<<(_nBits))|((_val32)>>(32-(_nBits))))
|
||||
#endif
|
||||
|
||||
#ifdef KEEPASS_LITTLE_ENDIAN
|
||||
#define SHABLK0(i) (m_block->l[i] = \
|
||||
(ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF))
|
||||
#else
|
||||
#define SHABLK0(i) (m_block->l[i])
|
||||
#endif
|
||||
|
||||
#define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ m_block->l[(i+8)&15] \
|
||||
^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1))
|
||||
|
||||
// SHA-1 rounds
|
||||
#define _R0(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }
|
||||
#define _R1(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }
|
||||
#define _R2(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5); w=ROL32(w,30); }
|
||||
#define _R3(v,w,x,y,z,i) { z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5); w=ROL32(w,30); }
|
||||
#define _R4(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5); w=ROL32(w,30); }
|
||||
|
||||
CSHA1::CSHA1()
|
||||
{
|
||||
m_block = (SHA1_WORKSPACE_BLOCK *)m_workspace;
|
||||
|
||||
Reset();
|
||||
}
|
||||
|
||||
CSHA1::~CSHA1()
|
||||
{
|
||||
Reset();
|
||||
}
|
||||
|
||||
void CSHA1::Reset()
|
||||
{
|
||||
// SHA1 initialization constants
|
||||
m_state[0] = 0x67452301;
|
||||
m_state[1] = 0xEFCDAB89;
|
||||
m_state[2] = 0x98BADCFE;
|
||||
m_state[3] = 0x10325476;
|
||||
m_state[4] = 0xC3D2E1F0;
|
||||
|
||||
m_count[0] = 0;
|
||||
m_count[1] = 0;
|
||||
}
|
||||
void CSHA1::Update(unsigned char* data, int len){
|
||||
|
||||
quint_32 i, j;
|
||||
|
||||
j = (m_count[0] >> 3) & 63;
|
||||
|
||||
if((m_count[0] += len << 3) < (len << 3)) m_count[1]++;
|
||||
|
||||
m_count[1] += (len >> 29);
|
||||
|
||||
if((j + len) > 63)
|
||||
{
|
||||
i = 64 - j;
|
||||
memcpy(&m_buffer[j], data, i);
|
||||
Transform(m_state, m_buffer);
|
||||
|
||||
for( ; i + 63 < len; i += 64) Transform(m_state, &data[i]);
|
||||
|
||||
j = 0;
|
||||
}
|
||||
else i = 0;
|
||||
|
||||
memcpy(&m_buffer[j], &data[i], len - i);
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
void CSHA1::Transform(quint_32 *state, quint_8 *buffer)
|
||||
{
|
||||
// Copy state[] to working vars
|
||||
quint_32 a = state[0], b = state[1], c = state[2], d = state[3], e = state[4];
|
||||
|
||||
memcpy(m_block, buffer, 64);
|
||||
|
||||
// 4 rounds of 20 operations each. Loop unrolled.
|
||||
_R0(a,b,c,d,e, 0); _R0(e,a,b,c,d, 1); _R0(d,e,a,b,c, 2); _R0(c,d,e,a,b, 3);
|
||||
_R0(b,c,d,e,a, 4); _R0(a,b,c,d,e, 5); _R0(e,a,b,c,d, 6); _R0(d,e,a,b,c, 7);
|
||||
_R0(c,d,e,a,b, 8); _R0(b,c,d,e,a, 9); _R0(a,b,c,d,e,10); _R0(e,a,b,c,d,11);
|
||||
_R0(d,e,a,b,c,12); _R0(c,d,e,a,b,13); _R0(b,c,d,e,a,14); _R0(a,b,c,d,e,15);
|
||||
_R1(e,a,b,c,d,16); _R1(d,e,a,b,c,17); _R1(c,d,e,a,b,18); _R1(b,c,d,e,a,19);
|
||||
_R2(a,b,c,d,e,20); _R2(e,a,b,c,d,21); _R2(d,e,a,b,c,22); _R2(c,d,e,a,b,23);
|
||||
_R2(b,c,d,e,a,24); _R2(a,b,c,d,e,25); _R2(e,a,b,c,d,26); _R2(d,e,a,b,c,27);
|
||||
_R2(c,d,e,a,b,28); _R2(b,c,d,e,a,29); _R2(a,b,c,d,e,30); _R2(e,a,b,c,d,31);
|
||||
_R2(d,e,a,b,c,32); _R2(c,d,e,a,b,33); _R2(b,c,d,e,a,34); _R2(a,b,c,d,e,35);
|
||||
_R2(e,a,b,c,d,36); _R2(d,e,a,b,c,37); _R2(c,d,e,a,b,38); _R2(b,c,d,e,a,39);
|
||||
_R3(a,b,c,d,e,40); _R3(e,a,b,c,d,41); _R3(d,e,a,b,c,42); _R3(c,d,e,a,b,43);
|
||||
_R3(b,c,d,e,a,44); _R3(a,b,c,d,e,45); _R3(e,a,b,c,d,46); _R3(d,e,a,b,c,47);
|
||||
_R3(c,d,e,a,b,48); _R3(b,c,d,e,a,49); _R3(a,b,c,d,e,50); _R3(e,a,b,c,d,51);
|
||||
_R3(d,e,a,b,c,52); _R3(c,d,e,a,b,53); _R3(b,c,d,e,a,54); _R3(a,b,c,d,e,55);
|
||||
_R3(e,a,b,c,d,56); _R3(d,e,a,b,c,57); _R3(c,d,e,a,b,58); _R3(b,c,d,e,a,59);
|
||||
_R4(a,b,c,d,e,60); _R4(e,a,b,c,d,61); _R4(d,e,a,b,c,62); _R4(c,d,e,a,b,63);
|
||||
_R4(b,c,d,e,a,64); _R4(a,b,c,d,e,65); _R4(e,a,b,c,d,66); _R4(d,e,a,b,c,67);
|
||||
_R4(c,d,e,a,b,68); _R4(b,c,d,e,a,69); _R4(a,b,c,d,e,70); _R4(e,a,b,c,d,71);
|
||||
_R4(d,e,a,b,c,72); _R4(c,d,e,a,b,73); _R4(b,c,d,e,a,74); _R4(a,b,c,d,e,75);
|
||||
_R4(e,a,b,c,d,76); _R4(d,e,a,b,c,77); _R4(c,d,e,a,b,78); _R4(b,c,d,e,a,79);
|
||||
|
||||
// Add the working vars back into state
|
||||
state[0] += a;
|
||||
state[1] += b;
|
||||
state[2] += c;
|
||||
state[3] += d;
|
||||
state[4] += e;
|
||||
|
||||
// Wipe variables
|
||||
#ifdef SHA1_WIPE_VARIABLES
|
||||
a = b = c = d = e = 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
// Hash in file contents
|
||||
bool CSHA1::HashFile(char *szFileName)
|
||||
{
|
||||
unsigned long ulFileSize, ulRest, ulBlocks;
|
||||
unsigned long i;
|
||||
quint_8 uData[SHA1_MAX_FILE_BUFFER];
|
||||
FILE *fIn;
|
||||
|
||||
if(szFileName == NULL) return false;
|
||||
|
||||
fIn = fopen(szFileName, "rb");
|
||||
if(fIn == NULL) return false;
|
||||
|
||||
fseek(fIn, 0, SEEK_END);
|
||||
ulFileSize = (unsigned long)ftell(fIn);
|
||||
fseek(fIn, 0, SEEK_SET);
|
||||
|
||||
if(ulFileSize != 0)
|
||||
{
|
||||
ulBlocks = ulFileSize / SHA1_MAX_FILE_BUFFER;
|
||||
ulRest = ulFileSize % SHA1_MAX_FILE_BUFFER;
|
||||
}
|
||||
else
|
||||
{
|
||||
ulBlocks = 0;
|
||||
ulRest = 0;
|
||||
}
|
||||
|
||||
for(i = 0; i < ulBlocks; i++)
|
||||
{
|
||||
fread(uData, 1, SHA1_MAX_FILE_BUFFER, fIn);
|
||||
Update((quint_8 *)uData, SHA1_MAX_FILE_BUFFER);
|
||||
}
|
||||
|
||||
if(ulRest != 0)
|
||||
{
|
||||
fread(uData, 1, ulRest, fIn);
|
||||
Update((quint_8 *)uData, ulRest);
|
||||
}
|
||||
|
||||
fclose(fIn); fIn = NULL;
|
||||
return true;
|
||||
}
|
||||
|
||||
void CSHA1::Final()
|
||||
{
|
||||
quint_32 i;
|
||||
quint_8 finalcount[8];
|
||||
|
||||
for(i = 0; i < 8; i++)
|
||||
finalcount[i] = (quint_8)((m_count[((i >= 4) ? 0 : 1)]
|
||||
>> ((3 - (i & 3)) * 8) ) & 255); // Endian independent
|
||||
|
||||
Update((quint_8 *)"\200", 1);
|
||||
|
||||
while ((m_count[0] & 504) != 448)
|
||||
Update((quint_8 *)"\0", 1);
|
||||
|
||||
Update(finalcount, 8); // Cause a SHA1Transform()
|
||||
|
||||
for(i = 0; i < 20; i++)
|
||||
{
|
||||
m_digest[i] = (quint_8)((m_state[i >> 2] >> ((3 - (i & 3)) * 8) ) & 255);
|
||||
}
|
||||
|
||||
// Wipe variables for security reasons
|
||||
#ifdef SHA1_WIPE_VARIABLES
|
||||
i = 0;
|
||||
memset(m_buffer, 0, 64);
|
||||
memset(m_state, 0, 20);
|
||||
memset(m_count, 0, 8);
|
||||
memset(finalcount, 0, 8);
|
||||
Transform(m_state, m_buffer);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the final hash as a pre-formatted string
|
||||
void CSHA1::ReportHash(char *szReport, unsigned char uReportType)
|
||||
{
|
||||
unsigned char i;
|
||||
char szTemp[16];
|
||||
|
||||
if(szReport == NULL) return;
|
||||
|
||||
if(uReportType == REPORT_HEX)
|
||||
{
|
||||
sprintf(szTemp, "%02X", m_digest[0]);
|
||||
strcat(szReport, szTemp);
|
||||
|
||||
for(i = 1; i < 20; i++)
|
||||
{
|
||||
sprintf(szTemp, " %02X", m_digest[i]);
|
||||
strcat(szReport, szTemp);
|
||||
}
|
||||
}
|
||||
else if(uReportType == REPORT_DIGIT)
|
||||
{
|
||||
sprintf(szTemp, "%u", m_digest[0]);
|
||||
strcat(szReport, szTemp);
|
||||
|
||||
for(i = 1; i < 20; i++)
|
||||
{
|
||||
sprintf(szTemp, " %u", m_digest[i]);
|
||||
strcat(szReport, szTemp);
|
||||
}
|
||||
}
|
||||
else strcpy(szReport, "Error: Unknown report type!");
|
||||
}
|
||||
|
||||
// Get the raw message digest
|
||||
void CSHA1::GetHash(quint_8 *puDest)
|
||||
{
|
||||
memcpy(puDest, m_digest, 20);
|
||||
}
|
||||
@@ -1,99 +0,0 @@
|
||||
/*
|
||||
100% free public domain implementation of the SHA-1 algorithm
|
||||
by Dominik Reichl <dominik.reichl@t-online.de>
|
||||
|
||||
Version 1.5 - 2005-01-01
|
||||
- 64-bit compiler compatibility added
|
||||
- Made variable wiping optional (define SHA1_WIPE_VARIABLES)
|
||||
- Removed unnecessary variable initializations
|
||||
- ROL32 improvement for the Microsoft compiler (using _rotl)
|
||||
|
||||
======== Test Vectors (from FIPS PUB 180-1) ========
|
||||
|
||||
SHA1("abc") =
|
||||
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
|
||||
|
||||
SHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq") =
|
||||
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
|
||||
|
||||
SHA1(A million repetitions of "a") =
|
||||
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
|
||||
*/
|
||||
|
||||
#ifndef ___SHA1_HDR___
|
||||
#define ___SHA1_HDR___
|
||||
|
||||
#include <stdio.h> // Needed for file access
|
||||
#include <memory.h> // Needed for memset and memcpy
|
||||
#include <string.h> // Needed for strcat and strcpy
|
||||
|
||||
|
||||
// If you're compiling big endian, just comment out the following line
|
||||
|
||||
|
||||
// #define or #undef this, if you want the CSHA1 class to wipe all
|
||||
// temporary variables after processing
|
||||
#define SHA1_WIPE_VARIABLES
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Define 8- and 32-bit variables
|
||||
|
||||
#ifndef quint_32
|
||||
#define quint_8 unsigned char
|
||||
#if (ULONG_MAX == 0xFFFFFFFF)
|
||||
#define quint_32 unsigned long
|
||||
#else
|
||||
#define quint_32 unsigned int
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Declare SHA1 workspace
|
||||
|
||||
typedef union
|
||||
{
|
||||
quint_8 c[64];
|
||||
quint_32 l[16];
|
||||
} SHA1_WORKSPACE_BLOCK;
|
||||
|
||||
class CSHA1
|
||||
{
|
||||
public:
|
||||
// Two different formats for ReportHash(...)
|
||||
enum
|
||||
{
|
||||
REPORT_HEX = 0,
|
||||
REPORT_DIGIT = 1
|
||||
};
|
||||
|
||||
// Constructor and Destructor
|
||||
CSHA1();
|
||||
~CSHA1();
|
||||
|
||||
quint_32 m_state[5];
|
||||
quint_32 m_count[2];
|
||||
quint_8 m_buffer[64];
|
||||
quint_8 m_digest[20];
|
||||
|
||||
void Reset();
|
||||
|
||||
// Update the hash value
|
||||
void Update(unsigned char* data, int len);
|
||||
bool HashFile(char *szFileName);
|
||||
|
||||
// Finalize hash and report
|
||||
void Final();
|
||||
void ReportHash(char *szReport, unsigned char uReportType = REPORT_HEX);
|
||||
void GetHash(quint_8 *puDest);
|
||||
|
||||
private:
|
||||
// Private SHA-1 transformation
|
||||
void Transform(quint_32 *state, quint_8 *buffer);
|
||||
|
||||
// Member variables
|
||||
quint_8 m_workspace[64];
|
||||
SHA1_WORKSPACE_BLOCK *m_block; // SHA1 pointer to the byte array above
|
||||
};
|
||||
|
||||
#endif
|
||||
249
src/crypto/sha256.c → src/crypto/sha256.cpp
Executable file → Normal file
249
src/crypto/sha256.c → src/crypto/sha256.cpp
Executable file → Normal file
@@ -1,41 +1,48 @@
|
||||
/*
|
||||
* FIPS-180-2 compliant SHA-256 implementation
|
||||
*
|
||||
* Copyright (C) 2001-2003 Christophe Devine
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
/***************************************************************************
|
||||
* Copyright (C) 2005-2006 by Tarek Saidi *
|
||||
* based on the FIPS-180-2 compliant SHA-256 implementation of *
|
||||
* Christophe Devine. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License for more details. *
|
||||
* *
|
||||
* You should have received a copy of the GNU General Public License *
|
||||
* along with this program; if not, write to the *
|
||||
* Free Software Foundation, Inc., *
|
||||
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
||||
***************************************************************************/
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "sha256.h"
|
||||
|
||||
#define GET_quint32(n,b,i) \
|
||||
#define GET_qquint32(n,b,i) \
|
||||
{ \
|
||||
(n) = ( (uint32) (b)[(i) ] << 24 ) \
|
||||
| ( (uint32) (b)[(i) + 1] << 16 ) \
|
||||
| ( (uint32) (b)[(i) + 2] << 8 ) \
|
||||
| ( (uint32) (b)[(i) + 3] ); \
|
||||
(n) = ( (quint32) (b)[(i) ] << 24 ) \
|
||||
| ( (quint32) (b)[(i) + 1] << 16 ) \
|
||||
| ( (quint32) (b)[(i) + 2] << 8 ) \
|
||||
| ( (quint32) (b)[(i) + 3] ); \
|
||||
}
|
||||
|
||||
#define PUT_quint32(n,b,i) \
|
||||
#define PUT_qquint32(n,b,i) \
|
||||
{ \
|
||||
(b)[(i) ] = (uint8) ( (n) >> 24 ); \
|
||||
(b)[(i) + 1] = (uint8) ( (n) >> 16 ); \
|
||||
(b)[(i) + 2] = (uint8) ( (n) >> 8 ); \
|
||||
(b)[(i) + 3] = (uint8) ( (n) ); \
|
||||
(b)[(i) ] = (quint8) ( (n) >> 24 ); \
|
||||
(b)[(i) + 1] = (quint8) ( (n) >> 16 ); \
|
||||
(b)[(i) + 2] = (quint8) ( (n) >> 8 ); \
|
||||
(b)[(i) + 3] = (quint8) ( (n) ); \
|
||||
}
|
||||
|
||||
void SHA256::hashBuffer(void* input, void* digest, quint32 length){
|
||||
sha256_context ctx;
|
||||
sha256_starts(&ctx);
|
||||
sha256_update(&ctx,(quint8*)input,length);
|
||||
sha256_finish(&ctx,(quint8*)digest);
|
||||
}
|
||||
|
||||
void sha256_starts( sha256_context *ctx )
|
||||
@@ -53,27 +60,27 @@ void sha256_starts( sha256_context *ctx )
|
||||
ctx->state[7] = 0x5BE0CD19;
|
||||
}
|
||||
|
||||
void sha256_process( sha256_context *ctx, uint8 data[64] )
|
||||
void sha256_process( sha256_context *ctx, const quint8 data[64] )
|
||||
{
|
||||
uint32 temp1, temp2, W[64];
|
||||
uint32 A, B, C, D, E, F, G, H;
|
||||
quint32 temp1, temp2, W[64];
|
||||
quint32 A, B, C, D, E, F, G, H;
|
||||
|
||||
GET_quint32( W[0], data, 0 );
|
||||
GET_quint32( W[1], data, 4 );
|
||||
GET_quint32( W[2], data, 8 );
|
||||
GET_quint32( W[3], data, 12 );
|
||||
GET_quint32( W[4], data, 16 );
|
||||
GET_quint32( W[5], data, 20 );
|
||||
GET_quint32( W[6], data, 24 );
|
||||
GET_quint32( W[7], data, 28 );
|
||||
GET_quint32( W[8], data, 32 );
|
||||
GET_quint32( W[9], data, 36 );
|
||||
GET_quint32( W[10], data, 40 );
|
||||
GET_quint32( W[11], data, 44 );
|
||||
GET_quint32( W[12], data, 48 );
|
||||
GET_quint32( W[13], data, 52 );
|
||||
GET_quint32( W[14], data, 56 );
|
||||
GET_quint32( W[15], data, 60 );
|
||||
GET_qquint32( W[0], data, 0 );
|
||||
GET_qquint32( W[1], data, 4 );
|
||||
GET_qquint32( W[2], data, 8 );
|
||||
GET_qquint32( W[3], data, 12 );
|
||||
GET_qquint32( W[4], data, 16 );
|
||||
GET_qquint32( W[5], data, 20 );
|
||||
GET_qquint32( W[6], data, 24 );
|
||||
GET_qquint32( W[7], data, 28 );
|
||||
GET_qquint32( W[8], data, 32 );
|
||||
GET_qquint32( W[9], data, 36 );
|
||||
GET_qquint32( W[10], data, 40 );
|
||||
GET_qquint32( W[11], data, 44 );
|
||||
GET_qquint32( W[12], data, 48 );
|
||||
GET_qquint32( W[13], data, 52 );
|
||||
GET_qquint32( W[14], data, 56 );
|
||||
GET_qquint32( W[15], data, 60 );
|
||||
|
||||
#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
|
||||
#define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
|
||||
@@ -184,9 +191,9 @@ void sha256_process( sha256_context *ctx, uint8 data[64] )
|
||||
ctx->state[7] += H;
|
||||
}
|
||||
|
||||
void sha256_update( sha256_context *ctx, uint8 *input, uint32 length )
|
||||
void sha256_update( sha256_context *ctx, const quint8 *input, quint32 length )
|
||||
{
|
||||
uint32 left, fill;
|
||||
quint32 left, fill;
|
||||
|
||||
if( ! length ) return;
|
||||
|
||||
@@ -223,7 +230,7 @@ void sha256_update( sha256_context *ctx, uint8 *input, uint32 length )
|
||||
}
|
||||
}
|
||||
|
||||
static uint8 sha256_padding[64] =
|
||||
static quint8 sha256_padding[64] =
|
||||
{
|
||||
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
@@ -231,18 +238,18 @@ static uint8 sha256_padding[64] =
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
|
||||
void sha256_finish( sha256_context *ctx, uint8 digest[32] )
|
||||
void sha256_finish( sha256_context *ctx, quint8 digest[32] )
|
||||
{
|
||||
uint32 last, padn;
|
||||
uint32 high, low;
|
||||
uint8 msglen[8];
|
||||
quint32 last, padn;
|
||||
quint32 high, low;
|
||||
quint8 msglen[8];
|
||||
|
||||
high = ( ctx->total[0] >> 29 )
|
||||
| ( ctx->total[1] << 3 );
|
||||
low = ( ctx->total[0] << 3 );
|
||||
|
||||
PUT_quint32( high, msglen, 0 );
|
||||
PUT_quint32( low, msglen, 4 );
|
||||
PUT_qquint32( high, msglen, 0 );
|
||||
PUT_qquint32( low, msglen, 4 );
|
||||
|
||||
last = ctx->total[0] & 0x3F;
|
||||
padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
|
||||
@@ -250,120 +257,12 @@ void sha256_finish( sha256_context *ctx, uint8 digest[32] )
|
||||
sha256_update( ctx, sha256_padding, padn );
|
||||
sha256_update( ctx, msglen, 8 );
|
||||
|
||||
PUT_quint32( ctx->state[0], digest, 0 );
|
||||
PUT_quint32( ctx->state[1], digest, 4 );
|
||||
PUT_quint32( ctx->state[2], digest, 8 );
|
||||
PUT_quint32( ctx->state[3], digest, 12 );
|
||||
PUT_quint32( ctx->state[4], digest, 16 );
|
||||
PUT_quint32( ctx->state[5], digest, 20 );
|
||||
PUT_quint32( ctx->state[6], digest, 24 );
|
||||
PUT_quint32( ctx->state[7], digest, 28 );
|
||||
}
|
||||
|
||||
#ifdef TEST
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
* those are the standard FIPS-180-2 test vectors
|
||||
*/
|
||||
|
||||
static char *msg[] =
|
||||
{
|
||||
"abc",
|
||||
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
||||
NULL
|
||||
};
|
||||
|
||||
static char *val[] =
|
||||
{
|
||||
"ba7816bf8f01cfea414140de5dae2223" \
|
||||
"b00361a396177a9cb410ff61f20015ad",
|
||||
"248d6a61d20638b8e5c026930c3e6039" \
|
||||
"a33ce45964ff2167f6ecedd419db06c1",
|
||||
"cdc76e5c9914fb9281a1c7e284d73e67" \
|
||||
"f1809a48a497200e046d39ccc7112cd0"
|
||||
};
|
||||
|
||||
int main( int argc, char *argv[] )
|
||||
{
|
||||
FILE *f;
|
||||
int i, j;
|
||||
char output[65];
|
||||
sha256_context ctx;
|
||||
unsigned char buf[1000];
|
||||
unsigned char sha256sum[32];
|
||||
|
||||
if( argc < 2 )
|
||||
{
|
||||
printf( "\n SHA-256 Validation Tests:\n\n" );
|
||||
|
||||
for( i = 0; i < 3; i++ )
|
||||
{
|
||||
printf( " Test %d ", i + 1 );
|
||||
|
||||
sha256_starts( &ctx );
|
||||
|
||||
if( i < 2 )
|
||||
{
|
||||
sha256_update( &ctx, (uint8 *) msg[i],
|
||||
strlen( msg[i] ) );
|
||||
}
|
||||
else
|
||||
{
|
||||
memset( buf, 'a', 1000 );
|
||||
|
||||
for( j = 0; j < 1000; j++ )
|
||||
{
|
||||
sha256_update( &ctx, (uint8 *) buf, 1000 );
|
||||
}
|
||||
}
|
||||
|
||||
sha256_finish( &ctx, sha256sum );
|
||||
|
||||
for( j = 0; j < 32; j++ )
|
||||
{
|
||||
sprintf( output + j * 2, "%02x", sha256sum[j] );
|
||||
}
|
||||
|
||||
if( memcmp( output, val[i], 64 ) )
|
||||
{
|
||||
printf( "failed!\n" );
|
||||
return( 1 );
|
||||
}
|
||||
|
||||
printf( "passed.\n" );
|
||||
}
|
||||
|
||||
printf( "\n" );
|
||||
}
|
||||
else
|
||||
{
|
||||
if( ! ( f = fopen( argv[1], "rb" ) ) )
|
||||
{
|
||||
perror( "fopen" );
|
||||
return( 1 );
|
||||
}
|
||||
|
||||
sha256_starts( &ctx );
|
||||
|
||||
while( ( i = fread( buf, 1, sizeof( buf ), f ) ) > 0 )
|
||||
{
|
||||
sha256_update( &ctx, buf, i );
|
||||
}
|
||||
|
||||
sha256_finish( &ctx, sha256sum );
|
||||
|
||||
for( j = 0; j < 32; j++ )
|
||||
{
|
||||
printf( "%02x", sha256sum[j] );
|
||||
}
|
||||
|
||||
printf( " %s\n", argv[1] );
|
||||
}
|
||||
|
||||
return( 0 );
|
||||
}
|
||||
|
||||
#endif
|
||||
PUT_qquint32( ctx->state[0], digest, 0 );
|
||||
PUT_qquint32( ctx->state[1], digest, 4 );
|
||||
PUT_qquint32( ctx->state[2], digest, 8 );
|
||||
PUT_qquint32( ctx->state[3], digest, 12 );
|
||||
PUT_qquint32( ctx->state[4], digest, 16 );
|
||||
PUT_qquint32( ctx->state[5], digest, 20 );
|
||||
PUT_qquint32( ctx->state[6], digest, 24 );
|
||||
PUT_qquint32( ctx->state[7], digest, 28 );
|
||||
}
|
||||
@@ -1,32 +1,49 @@
|
||||
/***************************************************************************
|
||||
* Copyright (C) 2005-2006 by Tarek Saidi *
|
||||
* based on the FIPS-180-2 compliant SHA-256 implementation of *
|
||||
* Christophe Devine. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License for more details. *
|
||||
* *
|
||||
* You should have received a copy of the GNU General Public License *
|
||||
* along with this program; if not, write to the *
|
||||
* Free Software Foundation, Inc., *
|
||||
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
||||
***************************************************************************/
|
||||
|
||||
#ifndef _SHA256_H
|
||||
#define _SHA256_H
|
||||
|
||||
#ifndef uint8
|
||||
#define uint8 unsigned char
|
||||
#endif
|
||||
|
||||
#ifndef uint32
|
||||
#define uint32 unsigned long int
|
||||
#endif
|
||||
#include <qglobal.h>
|
||||
|
||||
typedef struct
|
||||
{
|
||||
uint32 total[2];
|
||||
uint32 state[8];
|
||||
uint8 buffer[64];
|
||||
}
|
||||
sha256_context;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" { //Für C++ Kompalibilität
|
||||
#endif
|
||||
quint32 total[2];
|
||||
quint32 state[8];
|
||||
quint8 buffer[64];
|
||||
}sha256_context;
|
||||
|
||||
extern void sha256_starts( sha256_context *ctx );
|
||||
extern void sha256_update( sha256_context *ctx, uint8 *input, uint32 length );
|
||||
extern void sha256_finish( sha256_context *ctx, uint8 digest[32] );
|
||||
extern void sha256_update( sha256_context *ctx, const quint8 *input, quint32 length );
|
||||
extern void sha256_finish( sha256_context *ctx, quint8 digest[32] );
|
||||
|
||||
class SHA256{
|
||||
public:
|
||||
SHA256(){sha256_starts(&ctx);}
|
||||
void update(void* input,quint32 length){sha256_update(&ctx,(quint8*)input,length);}
|
||||
void finish(void* digest){sha256_finish(&ctx,(quint8*)digest);}
|
||||
static void hashBuffer(void* input, void* digest,quint32 length);
|
||||
private:
|
||||
sha256_context ctx;
|
||||
};
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* sha256.h */
|
||||
|
||||
@@ -31,7 +31,6 @@
|
||||
#define ___TWOFISH_CLASS_H___
|
||||
|
||||
#include "twofish.h"
|
||||
#include "crypto/rijndael.h"
|
||||
|
||||
class CTwofish
|
||||
{
|
||||
|
||||
420
src/crypto/yarrow.cpp
Normal file
420
src/crypto/yarrow.cpp
Normal file
@@ -0,0 +1,420 @@
|
||||
/* yarrow256.c
|
||||
*
|
||||
* The yarrow pseudo-randomness generator.
|
||||
*/
|
||||
|
||||
/* nettle, low-level cryptographics library
|
||||
*
|
||||
* Copyright (C) 2001 Niels M<>ler
|
||||
*
|
||||
* The nettle library is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU Lesser General Public License as published by
|
||||
* the Free Software Foundation; either version 2.1 of the License, or (at your
|
||||
* option) any later version.
|
||||
*
|
||||
* The nettle library is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
* License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public License
|
||||
* along with the nettle library; see the file COPYING.LIB. If not, write to
|
||||
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||||
* MA 02111-1307, USA.
|
||||
*/
|
||||
|
||||
#if HAVE_CONFIG_H
|
||||
# include "config.h"
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
|
||||
#include "yarrow.h"
|
||||
|
||||
#ifndef YARROW_DEBUG
|
||||
#define YARROW_DEBUG 0
|
||||
#endif
|
||||
|
||||
#if YARROW_DEBUG
|
||||
#include <stdio.h>
|
||||
#endif
|
||||
|
||||
#define SHA256_DIGEST_SIZE 32
|
||||
#define AES_MAX_KEY_SIZE 32
|
||||
|
||||
/* Parameters */
|
||||
|
||||
/* An upper limit on the entropy (in bits) in one octet of sample
|
||||
* data. */
|
||||
#define YARROW_MULTIPLIER 4
|
||||
|
||||
/* Entropy threshold for reseeding from the fast pool */
|
||||
#define YARROW_FAST_THRESHOLD 100
|
||||
|
||||
/* Entropy threshold for reseeding from the fast pool */
|
||||
#define YARROW_SLOW_THRESHOLD 160
|
||||
|
||||
/* Number of sources that must exceed the threshold for slow reseed */
|
||||
#define YARROW_SLOW_K 2
|
||||
|
||||
/* The number of iterations when reseeding, P_t in the yarrow paper.
|
||||
* Should be chosen so that reseeding takes on the order of 0.1-1
|
||||
* seconds. */
|
||||
#define YARROW_RESEED_ITERATIONS 1500
|
||||
|
||||
/* Entropy estimates sticks to this value, it is treated as infinity
|
||||
* in calculations. It should fit comfortably in an uint32_t, to avoid
|
||||
* overflows. */
|
||||
#define YARROW_MAX_ENTROPY 0x100000
|
||||
|
||||
/* Forward declarations */
|
||||
|
||||
static void
|
||||
yarrow_fast_reseed(struct yarrow256_ctx *ctx);
|
||||
|
||||
static void
|
||||
yarrow_gate(struct yarrow256_ctx *ctx);
|
||||
|
||||
void
|
||||
yarrow256_init(struct yarrow256_ctx *ctx,
|
||||
unsigned n,
|
||||
struct yarrow_source *s)
|
||||
{
|
||||
unsigned i;
|
||||
|
||||
sha256_starts(&ctx->pools[0]);
|
||||
sha256_starts(&ctx->pools[1]);
|
||||
|
||||
ctx->seeded = 0;
|
||||
|
||||
/* Not strictly, necessary, but it makes it easier to see if the
|
||||
* values are sane. */
|
||||
memset(ctx->seed_file, 0, YARROW256_SEED_FILE_SIZE);
|
||||
memset(ctx->counter, 0, sizeof(ctx->counter));
|
||||
|
||||
ctx->nsources = n;
|
||||
ctx->sources = s;
|
||||
|
||||
for (i = 0; i<n; i++)
|
||||
{
|
||||
ctx->sources[i].estimate[YARROW_FAST] = 0;
|
||||
ctx->sources[i].estimate[YARROW_SLOW] = 0;
|
||||
ctx->sources[i].next = YARROW_FAST;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
yarrow256_seed(struct yarrow256_ctx *ctx,
|
||||
unsigned length,
|
||||
const quint8 *seed_file)
|
||||
{
|
||||
/* FIXME: Perhaps it's better to use assert ? */
|
||||
if (!length)
|
||||
return;
|
||||
|
||||
sha256_update(&ctx->pools[YARROW_FAST], seed_file, length);
|
||||
yarrow_fast_reseed(ctx);
|
||||
|
||||
ctx->seeded = 1;
|
||||
}
|
||||
|
||||
/* FIXME: Generalize so that it generates a few more blocks at a
|
||||
* time. */
|
||||
static void
|
||||
yarrow_generate_block(struct yarrow256_ctx *ctx,
|
||||
quint8 *block)
|
||||
{
|
||||
unsigned i;
|
||||
//aes_encrypt(&ctx->key, sizeof(ctx->counter), block, ctx->counter);
|
||||
aes_ecb_encrypt(ctx->counter,block,sizeof(ctx->counter),&ctx->key);
|
||||
|
||||
/* Increment counter, treating it as a big-endian number. This is
|
||||
* machine independent, and follows appendix B of the NIST
|
||||
* specification of cipher modes of operation.
|
||||
*
|
||||
* We could keep a representation of thy counter as 4 32-bit values,
|
||||
* and write entire words (in big-endian byteorder) into the counter
|
||||
* block, whenever they change. */
|
||||
for (i = sizeof(ctx->counter); i--; )
|
||||
{
|
||||
if (++ctx->counter[i])
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
yarrow_iterate(quint8 *digest)
|
||||
{
|
||||
quint8 v0[SHA256_DIGEST_SIZE];
|
||||
unsigned i;
|
||||
|
||||
memcpy(v0, digest, SHA256_DIGEST_SIZE);
|
||||
|
||||
/* When hashed inside the loop, i should run from 1 to
|
||||
* YARROW_RESEED_ITERATIONS */
|
||||
for (i = 0; ++i < YARROW_RESEED_ITERATIONS; )
|
||||
{
|
||||
quint8 count[4];
|
||||
sha256_context hash;
|
||||
|
||||
sha256_starts(&hash);
|
||||
|
||||
/* Hash v_i | v_0 | i */
|
||||
WRITE_UINT32(count, i);
|
||||
sha256_update(&hash, digest, SHA256_DIGEST_SIZE);
|
||||
sha256_update(&hash, v0, sizeof(v0));
|
||||
sha256_update(&hash, count, sizeof(count));
|
||||
sha256_finish(&hash,digest);
|
||||
}
|
||||
}
|
||||
|
||||
/* NOTE: The SHA-256 digest size equals the AES key size, so we need
|
||||
* no "size adaptor". */
|
||||
|
||||
static void
|
||||
yarrow_fast_reseed(struct yarrow256_ctx *ctx)
|
||||
{
|
||||
quint8 digest[SHA256_DIGEST_SIZE];
|
||||
unsigned i;
|
||||
|
||||
#if YARROW_DEBUG
|
||||
fprintf(stderr, "yarrow_fast_reseed\n");
|
||||
#endif
|
||||
|
||||
/* We feed two block of output using the current key into the pool
|
||||
* before emptying it. */
|
||||
if (ctx->seeded)
|
||||
{
|
||||
quint8 blocks[AES_BLOCK_SIZE * 2];
|
||||
|
||||
yarrow_generate_block(ctx, blocks);
|
||||
yarrow_generate_block(ctx, blocks + AES_BLOCK_SIZE);
|
||||
sha256_update(&ctx->pools[YARROW_FAST],blocks,sizeof(blocks));
|
||||
}
|
||||
|
||||
sha256_finish(&ctx->pools[YARROW_FAST],digest);
|
||||
|
||||
/* Iterate */
|
||||
yarrow_iterate(digest);
|
||||
|
||||
aes_encrypt_key(digest,sizeof(digest),&ctx->key);
|
||||
|
||||
/* Derive new counter value */
|
||||
memset(ctx->counter, 0, sizeof(ctx->counter));
|
||||
//aes_encrypt(&ctx->key, sizeof(ctx->counter), ctx->counter, ctx->counter);
|
||||
aes_ecb_encrypt(ctx->counter,ctx->counter,sizeof(ctx->counter),&ctx->key);
|
||||
|
||||
/* Reset estimates. */
|
||||
for (i = 0; i<ctx->nsources; i++)
|
||||
ctx->sources[i].estimate[YARROW_FAST] = 0;
|
||||
|
||||
/* New seed file. */
|
||||
/* FIXME: Extract this into a function of its own. */
|
||||
for (i = 0; i < sizeof(ctx->seed_file); i+= AES_BLOCK_SIZE)
|
||||
yarrow_generate_block(ctx, ctx->seed_file + i);
|
||||
|
||||
yarrow_gate(ctx);
|
||||
}
|
||||
|
||||
static void
|
||||
yarrow_slow_reseed(struct yarrow256_ctx *ctx)
|
||||
{
|
||||
quint8 digest[SHA256_DIGEST_SIZE];
|
||||
unsigned i;
|
||||
|
||||
#if YARROW_DEBUG
|
||||
fprintf(stderr, "yarrow_slow_reseed\n");
|
||||
#endif
|
||||
|
||||
/* Get digest of the slow pool*/
|
||||
|
||||
sha256_finish(&ctx->pools[YARROW_SLOW], digest);
|
||||
|
||||
/* Feed it into the fast pool */
|
||||
sha256_update(&ctx->pools[YARROW_FAST],digest, sizeof(digest));
|
||||
|
||||
yarrow_fast_reseed(ctx);
|
||||
|
||||
/* Reset estimates. */
|
||||
for (i = 0; i<ctx->nsources; i++)
|
||||
ctx->sources[i].estimate[YARROW_SLOW] = 0;
|
||||
}
|
||||
|
||||
int
|
||||
yarrow256_update(struct yarrow256_ctx *ctx,
|
||||
unsigned source_index, unsigned entropy,
|
||||
unsigned length, const quint8 *data)
|
||||
{
|
||||
enum yarrow_pool_id current;
|
||||
struct yarrow_source *source;
|
||||
|
||||
assert(source_index < ctx->nsources);
|
||||
|
||||
if (!length)
|
||||
/* Nothing happens */
|
||||
return 0;
|
||||
|
||||
source = &ctx->sources[source_index];
|
||||
|
||||
if (!ctx->seeded)
|
||||
/* While seeding, use the slow pool */
|
||||
current = YARROW_SLOW;
|
||||
else
|
||||
{
|
||||
current = source->next;
|
||||
source->next = (yarrow_pool_id)!source->next;
|
||||
}
|
||||
|
||||
sha256_update(&ctx->pools[current],data,length);
|
||||
|
||||
/* NOTE: We should be careful to avoid overflows in the estimates. */
|
||||
if (source->estimate[current] < YARROW_MAX_ENTROPY)
|
||||
{
|
||||
if (entropy > YARROW_MAX_ENTROPY)
|
||||
entropy = YARROW_MAX_ENTROPY;
|
||||
|
||||
if ( (length < (YARROW_MAX_ENTROPY / YARROW_MULTIPLIER))
|
||||
&& (entropy > YARROW_MULTIPLIER * length) )
|
||||
entropy = YARROW_MULTIPLIER * length;
|
||||
|
||||
/* FIXME: Calling a more sophisticated estimater should be done
|
||||
* here. */
|
||||
|
||||
entropy += source->estimate[current];
|
||||
if (entropy > YARROW_MAX_ENTROPY)
|
||||
entropy = YARROW_MAX_ENTROPY;
|
||||
|
||||
source->estimate[current] = entropy;
|
||||
}
|
||||
|
||||
/* Check for seed/reseed */
|
||||
switch(current)
|
||||
{
|
||||
case YARROW_FAST:
|
||||
#if YARROW_DEBUG
|
||||
fprintf(stderr,
|
||||
"yarrow256_update: source_index = %d,\n"
|
||||
" fast pool estimate = %d\n",
|
||||
source_index, source->estimate[YARROW_FAST]);
|
||||
#endif
|
||||
if (source->estimate[YARROW_FAST] >= YARROW_FAST_THRESHOLD)
|
||||
{
|
||||
yarrow_fast_reseed(ctx);
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
return 0;
|
||||
|
||||
case YARROW_SLOW:
|
||||
{
|
||||
/* FIXME: This is somewhat inefficient. It would be better to
|
||||
* either maintain the count, or do this loop only if the
|
||||
* current source just crossed the threshold. */
|
||||
|
||||
if (!yarrow256_needed_sources(ctx))
|
||||
{
|
||||
yarrow_slow_reseed(ctx);
|
||||
ctx->seeded = 1;
|
||||
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
yarrow_gate(struct yarrow256_ctx *ctx)
|
||||
{
|
||||
quint8 key[AES_MAX_KEY_SIZE];
|
||||
unsigned i;
|
||||
|
||||
for (i = 0; i < sizeof(key); i+= AES_BLOCK_SIZE)
|
||||
yarrow_generate_block(ctx, key + i);
|
||||
|
||||
aes_encrypt_key(key,sizeof(key),&ctx->key);
|
||||
}
|
||||
|
||||
void
|
||||
yarrow256_random(struct yarrow256_ctx *ctx, unsigned length, quint8 *dst)
|
||||
{
|
||||
assert(ctx->seeded);
|
||||
|
||||
while (length >= AES_BLOCK_SIZE)
|
||||
{
|
||||
yarrow_generate_block(ctx, dst);
|
||||
dst += AES_BLOCK_SIZE;
|
||||
length -= AES_BLOCK_SIZE;
|
||||
}
|
||||
if (length)
|
||||
{
|
||||
quint8 buffer[AES_BLOCK_SIZE];
|
||||
|
||||
assert(length < AES_BLOCK_SIZE);
|
||||
yarrow_generate_block(ctx, buffer);
|
||||
memcpy(dst, buffer, length);
|
||||
}
|
||||
yarrow_gate(ctx);
|
||||
}
|
||||
|
||||
int
|
||||
yarrow256_is_seeded(struct yarrow256_ctx *ctx)
|
||||
{
|
||||
return ctx->seeded;
|
||||
}
|
||||
|
||||
unsigned
|
||||
yarrow256_needed_sources(struct yarrow256_ctx *ctx)
|
||||
{
|
||||
/* FIXME: This is somewhat inefficient. It would be better to
|
||||
* either maintain the count, or do this loop only if the
|
||||
* current source just crossed the threshold. */
|
||||
unsigned k, i;
|
||||
|
||||
for (i = k = 0; i < ctx->nsources; i++)
|
||||
if (ctx->sources[i].estimate[YARROW_SLOW] >= YARROW_SLOW_THRESHOLD)
|
||||
k++;
|
||||
|
||||
#if YARROW_DEBUG
|
||||
fprintf(stderr,
|
||||
"yarrow256_needed_sources: source_index = %d,\n"
|
||||
" slow pool estimate = %d,\n"
|
||||
" number of sources above threshold = %d\n",
|
||||
source_index, source->estimate[YARROW_SLOW], k);
|
||||
#endif
|
||||
|
||||
return (k < YARROW_SLOW_K) ? (YARROW_SLOW_K - k) : 0;
|
||||
}
|
||||
|
||||
void
|
||||
yarrow256_force_reseed(struct yarrow256_ctx *ctx)
|
||||
{
|
||||
yarrow_slow_reseed(ctx);
|
||||
}
|
||||
|
||||
struct yarrow256_ctx WeakCtx;
|
||||
struct yarrow256_ctx StrongCtx;
|
||||
struct yarrow_source WeakSrc[2];
|
||||
|
||||
void initYarrow(){
|
||||
yarrow256_init(&WeakCtx,2,WeakSrc);
|
||||
quint8 buffer[100];
|
||||
srand(time(0));
|
||||
for(int i=0;i<100;i++)
|
||||
buffer[i]=rand()%256+1;
|
||||
yarrow256_update(&WeakCtx,0,800,100,buffer);
|
||||
for(int i=0;i<100;i++)
|
||||
buffer[i]=rand()%256+1;
|
||||
yarrow256_update(&WeakCtx,1,800,100,buffer);
|
||||
Q_ASSERT(yarrow256_is_seeded(&WeakCtx));
|
||||
}
|
||||
|
||||
void randomize(void* buffer, unsigned int length){
|
||||
yarrow256_random(&WeakCtx,length,(quint8*)buffer);
|
||||
}
|
||||
190
src/crypto/yarrow.h
Normal file
190
src/crypto/yarrow.h
Normal file
@@ -0,0 +1,190 @@
|
||||
/* yarrow.h
|
||||
*
|
||||
* The yarrow pseudo-randomness generator.
|
||||
*/
|
||||
|
||||
/* nettle, low-level cryptographics library
|
||||
*
|
||||
* Copyright (C) 2001 Niels M<>ler
|
||||
*
|
||||
* The nettle library is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU Lesser General Public License as published by
|
||||
* the Free Software Foundation; either version 2.1 of the License, or (at your
|
||||
* option) any later version.
|
||||
*
|
||||
* The nettle library is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
* License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public License
|
||||
* along with the nettle library; see the file COPYING.LIB. If not, write to
|
||||
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||||
* MA 02111-1307, USA.
|
||||
*/
|
||||
|
||||
#ifndef NETTLE_YARROW_COMPAT_H_INCLUDED
|
||||
#define NETTLE_YARROW_COMPAT_H_INCLUDED
|
||||
|
||||
#include "aes.h"
|
||||
#include "sha256.h"
|
||||
|
||||
/* Name mangling */
|
||||
#define yarrow256_init nettle_yarrow256_init
|
||||
#define yarrow256_seed nettle_yarrow256_seed
|
||||
#define yarrow256_update nettle_yarrow256_update
|
||||
#define yarrow256_random nettle_yarrow256_random
|
||||
#define yarrow256_is_seeded nettle_yarrow256_is_seeded
|
||||
#define yarrow256_needed_sources nettle_yarrow256_needed_sources
|
||||
#define yarrow256_force_reseed nettle_yarrow256_force_reseed
|
||||
#define yarrow_key_event_init nettle_yarrow_key_event_init
|
||||
#define yarrow_key_event_estimate nettle_yarrow_key_event_estimate
|
||||
|
||||
enum yarrow_pool_id { YARROW_FAST = 0, YARROW_SLOW = 1 };
|
||||
|
||||
struct yarrow_source
|
||||
{
|
||||
/* Indexed by yarrow_pool_id */
|
||||
quint32 estimate[2];
|
||||
|
||||
/* The pool next sample should go to. */
|
||||
enum yarrow_pool_id next;
|
||||
};
|
||||
|
||||
|
||||
#define YARROW256_SEED_FILE_SIZE (2 * AES_BLOCK_SIZE)
|
||||
|
||||
/* Yarrow-256, based on SHA-256 and AES-256 */
|
||||
struct yarrow256_ctx
|
||||
{
|
||||
/* Indexed by yarrow_pool_id */
|
||||
sha256_context pools[2];
|
||||
|
||||
quint8 seed_file[YARROW256_SEED_FILE_SIZE];
|
||||
|
||||
int seeded;
|
||||
|
||||
/* The current key and counter block */
|
||||
aes_encrypt_ctx key;
|
||||
quint8 counter[AES_BLOCK_SIZE];
|
||||
|
||||
/* The entropy sources */
|
||||
unsigned nsources;
|
||||
struct yarrow_source *sources;
|
||||
};
|
||||
|
||||
void
|
||||
yarrow256_init(struct yarrow256_ctx *ctx,
|
||||
unsigned nsources,
|
||||
struct yarrow_source *sources);
|
||||
|
||||
void
|
||||
yarrow256_seed(struct yarrow256_ctx *ctx,
|
||||
unsigned length,
|
||||
const quint8 *seed_file);
|
||||
|
||||
/* Returns 1 on reseed */
|
||||
int
|
||||
yarrow256_update(struct yarrow256_ctx *ctx,
|
||||
unsigned source, unsigned entropy,
|
||||
unsigned length, const quint8 *data);
|
||||
|
||||
void
|
||||
yarrow256_random(struct yarrow256_ctx *ctx, unsigned length, quint8 *dst);
|
||||
|
||||
int
|
||||
yarrow256_is_seeded(struct yarrow256_ctx *ctx);
|
||||
|
||||
unsigned
|
||||
yarrow256_needed_sources(struct yarrow256_ctx *ctx);
|
||||
|
||||
void
|
||||
yarrow256_force_reseed(struct yarrow256_ctx *ctx);
|
||||
|
||||
|
||||
/* Key event estimator */
|
||||
#define YARROW_KEY_EVENT_BUFFER 16
|
||||
|
||||
struct yarrow_key_event_ctx
|
||||
{
|
||||
/* Counter for initial priming of the state */
|
||||
unsigned index;
|
||||
unsigned chars[YARROW_KEY_EVENT_BUFFER];
|
||||
unsigned previous;
|
||||
};
|
||||
|
||||
void
|
||||
yarrow_key_event_init(struct yarrow_key_event_ctx *ctx);
|
||||
|
||||
unsigned
|
||||
yarrow_key_event_estimate(struct yarrow_key_event_ctx *ctx,
|
||||
unsigned key, unsigned time);
|
||||
|
||||
|
||||
/* merged code from macros.h: */
|
||||
|
||||
/* Reads a 32-bit integer, in network, big-endian, byte order */
|
||||
#define READ_UINT32(p) \
|
||||
( (((quint32) (p)[0]) << 24) \
|
||||
| (((quint32) (p)[1]) << 16) \
|
||||
| (((quint32) (p)[2]) << 8) \
|
||||
| ((quint32) (p)[3]))
|
||||
|
||||
#define WRITE_UINT32(p, i) \
|
||||
do { \
|
||||
(p)[0] = ((i) >> 24) & 0xff; \
|
||||
(p)[1] = ((i) >> 16) & 0xff; \
|
||||
(p)[2] = ((i) >> 8) & 0xff; \
|
||||
(p)[3] = (i) & 0xff; \
|
||||
} while(0)
|
||||
|
||||
/* Analogous macros, for 24 and 16 bit numbers */
|
||||
#define READ_UINT24(p) \
|
||||
( (((quint32) (p)[0]) << 16) \
|
||||
| (((quint32) (p)[1]) << 8) \
|
||||
| ((quint32) (p)[2]))
|
||||
|
||||
#define WRITE_UINT24(p, i) \
|
||||
do { \
|
||||
(p)[0] = ((i) >> 16) & 0xff; \
|
||||
(p)[1] = ((i) >> 8) & 0xff; \
|
||||
(p)[2] = (i) & 0xff; \
|
||||
} while(0)
|
||||
|
||||
#define READ_UINT16(p) \
|
||||
( (((quint32) (p)[0]) << 8) \
|
||||
| ((quint32) (p)[1]))
|
||||
|
||||
#define WRITE_UINT16(p, i) \
|
||||
do { \
|
||||
(p)[0] = ((i) >> 8) & 0xff; \
|
||||
(p)[1] = (i) & 0xff; \
|
||||
} while(0)
|
||||
|
||||
/* And the other, little-endian, byteorder */
|
||||
#define LE_READ_UINT32(p) \
|
||||
( (((quint32) (p)[3]) << 24) \
|
||||
| (((quint32) (p)[2]) << 16) \
|
||||
| (((quint32) (p)[1]) << 8) \
|
||||
| ((quint32) (p)[0]))
|
||||
|
||||
#define LE_WRITE_UINT32(p, i) \
|
||||
do { \
|
||||
(p)[3] = ((i) >> 24) & 0xff; \
|
||||
(p)[2] = ((i) >> 16) & 0xff; \
|
||||
(p)[1] = ((i) >> 8) & 0xff; \
|
||||
(p)[0] = (i) & 0xff; \
|
||||
} while(0)
|
||||
|
||||
/* Macro to make it easier to loop over several blocks. */
|
||||
#define FOR_BLOCKS(length, dst, src, blocksize) \
|
||||
assert( !((length) % (blocksize))); \
|
||||
for (; (length); ((length) -= (blocksize), \
|
||||
(dst) += (blocksize), \
|
||||
(src) += (blocksize)) )
|
||||
|
||||
void initYarrow();
|
||||
void randomize(void* buffer, unsigned int length);
|
||||
|
||||
|
||||
#endif /* NETTLE_YARROW_COMPAT_H_INCLUDED */
|
||||
88
src/crypto/yarrow_macros.h
Normal file
88
src/crypto/yarrow_macros.h
Normal file
@@ -0,0 +1,88 @@
|
||||
/* macros.h
|
||||
*
|
||||
*/
|
||||
|
||||
/* nettle, low-level cryptographics library
|
||||
*
|
||||
* Copyright (C) 2001 Niels M<>ller
|
||||
*
|
||||
* The nettle library is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU Lesser General Public License as published by
|
||||
* the Free Software Foundation; either version 2.1 of the License, or (at your
|
||||
* option) any later version.
|
||||
*
|
||||
* The nettle library is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
* License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public License
|
||||
* along with the nettle library; see the file COPYING.LIB. If not, write to
|
||||
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||||
* MA 02111-1307, USA.
|
||||
*/
|
||||
|
||||
#ifndef NETTLE_MACROS_H_INCLUDED
|
||||
#define NETTLE_MACROS_H_INCLUDED
|
||||
|
||||
/* Reads a 32-bit integer, in network, big-endian, byte order */
|
||||
#define READ_UINT32(p) \
|
||||
( (((uint32_t) (p)[0]) << 24) \
|
||||
| (((uint32_t) (p)[1]) << 16) \
|
||||
| (((uint32_t) (p)[2]) << 8) \
|
||||
| ((uint32_t) (p)[3]))
|
||||
|
||||
#define WRITE_UINT32(p, i) \
|
||||
do { \
|
||||
(p)[0] = ((i) >> 24) & 0xff; \
|
||||
(p)[1] = ((i) >> 16) & 0xff; \
|
||||
(p)[2] = ((i) >> 8) & 0xff; \
|
||||
(p)[3] = (i) & 0xff; \
|
||||
} while(0)
|
||||
|
||||
/* Analogous macros, for 24 and 16 bit numbers */
|
||||
#define READ_UINT24(p) \
|
||||
( (((uint32_t) (p)[0]) << 16) \
|
||||
| (((uint32_t) (p)[1]) << 8) \
|
||||
| ((uint32_t) (p)[2]))
|
||||
|
||||
#define WRITE_UINT24(p, i) \
|
||||
do { \
|
||||
(p)[0] = ((i) >> 16) & 0xff; \
|
||||
(p)[1] = ((i) >> 8) & 0xff; \
|
||||
(p)[2] = (i) & 0xff; \
|
||||
} while(0)
|
||||
|
||||
#define READ_UINT16(p) \
|
||||
( (((uint32_t) (p)[0]) << 8) \
|
||||
| ((uint32_t) (p)[1]))
|
||||
|
||||
#define WRITE_UINT16(p, i) \
|
||||
do { \
|
||||
(p)[0] = ((i) >> 8) & 0xff; \
|
||||
(p)[1] = (i) & 0xff; \
|
||||
} while(0)
|
||||
|
||||
/* And the other, little-endian, byteorder */
|
||||
#define LE_READ_UINT32(p) \
|
||||
( (((uint32_t) (p)[3]) << 24) \
|
||||
| (((uint32_t) (p)[2]) << 16) \
|
||||
| (((uint32_t) (p)[1]) << 8) \
|
||||
| ((uint32_t) (p)[0]))
|
||||
|
||||
#define LE_WRITE_UINT32(p, i) \
|
||||
do { \
|
||||
(p)[3] = ((i) >> 24) & 0xff; \
|
||||
(p)[2] = ((i) >> 16) & 0xff; \
|
||||
(p)[1] = ((i) >> 8) & 0xff; \
|
||||
(p)[0] = (i) & 0xff; \
|
||||
} while(0)
|
||||
|
||||
/* Macro to make it easier to loop over several blocks. */
|
||||
#define FOR_BLOCKS(length, dst, src, blocksize) \
|
||||
assert( !((length) % (blocksize))); \
|
||||
for (; (length); ((length) -= (blocksize), \
|
||||
(dst) += (blocksize), \
|
||||
(src) += (blocksize)) )
|
||||
|
||||
#endif /* NETTLE_MACROS_H_INCLUDED */
|
||||
Reference in New Issue
Block a user